精英家教网 > 高中数学 > 题目详情
2.设全集为R,集合A={x|-3≤x<6},B={x|2<x<9}.
(Ⅰ)求A∩B,A∪(∁RB);
(Ⅱ)已知C={x|a<x<2a+1},若C⊆A,求实数a的取值范围.

分析 (Ⅰ)直接利用交集求解A∩B,求出B的补集,然后求解A∪(∁RB);
(Ⅱ)利用子集关系列出不等式组求解即可.

解答 解:(Ⅰ)集合A={x|-3≤x<6},B={x|2<x<9}.
由数轴得A∩B={x|2<x<6},…(2分)
因为∁RB={x|x≤2或x≥9},
所以A∪(∁RB)={x|x<6或x≥9};…(5分)
(Ⅱ)C={x|a<x<2a+1},C⊆A,
若C=∅,则a≥2a+1,即a≤-1,满足题意,…(7分)
若C≠∅,则$\left\{\begin{array}{l}{-3≤a}\\{a<2a+1}\\{2a+1≤6}\end{array}\right.$,解得-1$<a≤\frac{5}{2}$,…(10分)
综上可知,实数a的取值范围为a$≤\frac{5}{2}$…(12分)

点评 本题考查集合的基本运算,集合的包含关系以及应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.计算27${\;}^{-\frac{1}{3}}}$的结果是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若增函数f(x)=ax+b与x轴交点是(2,0),则不等式bx2-ax>0的解集是(  )
A.$(-∞,-\frac{1}{2})∪(0,+∞)$B.$(0,\frac{1}{2})$C.$(-\frac{1}{2},0)$D.$(-∞,0)∪(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)是定义在R上的奇函数,当x>0时f(x)=log2x,则f(-4)+f(0)=-2; 若f(a)>f(-a),则实数a的取值范围是a>1或-1<a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(2x-1)-f($\frac{1}{3}$)<0,则x取值范围是(  )
A.($\frac{1}{3}$,$\frac{2}{3}$)B.[$\frac{1}{3}$,-$\frac{2}{3}$)C.($\frac{1}{2}$,$\frac{2}{3}$)D.[$\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简求值:
(1)(7+4$\sqrt{3}$)${\;}^{\frac{1}{2}}}$-81${\;}^{\frac{1}{8}}}$+32${\;}^{\frac{3}{5}}}$-2×($\frac{1}{8}$)${\;}^{-\frac{2}{3}}}$+$\root{3}{2$×(4${\;}^{-\frac{1}{3}}}$)-1
(2)(log62)2+(log63)2+3log62×(log6$\root{3}{18}$-$\frac{1}{3}$log62).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将函数f(x)=2sin(2x-$\frac{π}{3}$)+1的图象上各点的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$,所得图象的一个对称中心可能是(  )
A.($\frac{π}{3}$,0)B.($\frac{2π}{3}$,0)C.($\frac{π}{3}$,1)D.($\frac{2π}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}中,a1=-3,11a5=5a8,前n项和为Sn
(1)求an
(2)当n为何值时,Sn最小?并求Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

查看答案和解析>>

同步练习册答案