精英家教网 > 高中数学 > 题目详情
12.计算27${\;}^{-\frac{1}{3}}}$的结果是$\frac{1}{3}$.

分析 根据指数幂的运算性质计算即可.

解答 解:27${\;}^{-\frac{1}{3}}}$=${3}^{3×(-\frac{1}{3})}$=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$

点评 本题考查了指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,四边形ABCD是梯形,AD∥BC
(1)平面PAB∩平面PCD=l,直线l能否与平面ABCD平行?说明理由;
(2)若M为棱PD的中点,AM能否与平面PBC平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知变量x,y满足条件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,则$\frac{y+1}{x}$的取值范围是(  )
A.[0,3]B.[$\frac{1}{2}$,3]C.[$\frac{1}{2}$,4]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\left\{\begin{array}{l}{2x+1,x<1}\\{a+log_2x,x≥1}\end{array}\right.$在R上为单调函数,则a的取值范围为a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知全集U=R,集合A={x|x≥1},集合B={x|x≤0},则∁(A∪B)={x|0<x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,若点D满足$\overrightarrow{CD}$=2$\overrightarrow{DB}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$B.$\frac{2}{3}$$\overrightarrow{b}$+$\frac{5}{3}$$\overrightarrow{c}$C.$\frac{1}{3}$$\overrightarrow{b}$+$\frac{2}{3}$$\overrightarrow{c}$D.$\frac{2}{3}$$\overrightarrow{b}$-$\frac{1}{3}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A={x|(2x2-6•2x+8≤0},函数f(x)=log2x(x∈A). 
(1)求函数f(x)的定义域;
(2)若函数h(x)=[f(x)]2-log2(2x),求函数h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若正实数x,y满足x+2y+2xy-8=0,则x+2y的最小值(  )
A.3B.4C.$\frac{9}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设全集为R,集合A={x|-3≤x<6},B={x|2<x<9}.
(Ⅰ)求A∩B,A∪(∁RB);
(Ⅱ)已知C={x|a<x<2a+1},若C⊆A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案