精英家教网 > 高中数学 > 题目详情
4.已知A={x|(2x2-6•2x+8≤0},函数f(x)=log2x(x∈A). 
(1)求函数f(x)的定义域;
(2)若函数h(x)=[f(x)]2-log2(2x),求函数h(x)的值域.

分析 (1)设t=2x,把(2x2-6•2x+8≤0转化为关于t的一元二次不等式求得t的范围,进一步求得x的范围得答案;
(2)设u=log2x,由(1)u=log2x∈[0,1],然后利用配方法求得函数的值域.

解答 解:(1)设t=2x
∵A={x|(2x2-6•2x+8≤0},
∴t2-6t+8≤0,解得2≤t≤4,
∴x∈[1,2],即函数f(x)的定义域为[1,2];
(2)设u=log2x,由(1)u=log2x∈[0,1],
∴$y={u}^{2}-u-1=(u-\frac{1}{2})^{2}-\frac{5}{4}$,
∴h(x)∈[$-\frac{5}{4},-1$].

点评 本题考查函数的定义域、值域及其求法,训练了利用换元法及配方法求解函数的值域,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.命题“?x∈R,ax2-2ax+3>0恒成立”是真命题,则实数a的取值范围是0≤a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合M={-1,1},N={x|x2-4<0},则下列结论正确的是(  )
A.N⊆MB.N∩M=∅C.M⊆ND.M∪N=R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算27${\;}^{-\frac{1}{3}}}$的结果是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合M={m|-3<m<2},N={n|-1<n≤3,n∈N},则M∩N={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=4x2-mx+5,在[-2,+∞)上递增,在(-∞,-2]上递减,则f(1)=(  )
A.-7B.1C.17D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=sin3x+cos2x-cos2x-sinx的最大值等于(  )
A.$\frac{4}{27}$B.$\frac{5}{27}$C.$\frac{1}{3}$D.$\frac{16}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若增函数f(x)=ax+b与x轴交点是(2,0),则不等式bx2-ax>0的解集是(  )
A.$(-∞,-\frac{1}{2})∪(0,+∞)$B.$(0,\frac{1}{2})$C.$(-\frac{1}{2},0)$D.$(-∞,0)∪(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将函数f(x)=2sin(2x-$\frac{π}{3}$)+1的图象上各点的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$,所得图象的一个对称中心可能是(  )
A.($\frac{π}{3}$,0)B.($\frac{2π}{3}$,0)C.($\frac{π}{3}$,1)D.($\frac{2π}{3}$,1)

查看答案和解析>>

同步练习册答案