分析 由已知得f(-4)=-f(4)=-log24=-2,f(0))=0,可得f(-4)+f(0);f(a)>f(-a),可化为f(a)>0,分类讨论,可得结论.
解答 解:∵f(x)是定义在R上的奇函数,
且当x>0时,f(x)=log2x,
∴f(-4)=-f(4)=-log24=-2,f(0))=0,
∴f(-4)+f(0)=-2;
f(a)>f(-a),可化为f(a)>0,a>0时,log2a>0,∴a>1;
a<0时,f(-a)<0,log2(-a)<0,∴-1<a<0.
综上所述,a>1或-1<a<0.
故答案为-2,a>1或-1<a<0.
点评 本题考查函数值的求法,是基础题,解题时要注意函数性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | $\frac{9}{2}$ | D. | $\frac{11}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com