分析 函数F(x)=f(x)-a(0<a<1)的零点转化为:在同一坐标系内y=f(x),y=a的图象交点的横坐标;作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,根据奇函数f(x)在x≥0时的解析式,作出函数的图象,结合图象及其对称性,求出答案.
解答 解:∵当x≥0时,
f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,
即x∈[0,1)时,f(x)=${log}_{\frac{1}{2}}$(x+1)∈(-1,0];
x∈[1,3]时,f(x)=x-2∈[-1,1];
x∈(3,+∞)时,f(x)=4-x∈(-∞,-1);
画出x≥0时f(x)的图象,
再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;![]()
则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)-a=0共有五个实根,
最左边两根之和为-6,最右边两根之和为6,
∵x∈(-1,0)时,-x∈(0,1),
∴f(-x)=${log}_{\frac{1}{2}}$(-x+1),
又f(-x)=-f(x),
∴f(x)=-${log}_{\frac{1}{2}}$(-x+1)=${log}_{\frac{1}{2}}$(1-x)-1=log2(1-x),
∴中间的一个根满足log2(1-x)=a,即1-x=2a,
解得x=1-2a,
∴所有根的和为1-2a.
故答案为:1-2a.
点评 本题考查分段函数的图象与性质的应用问题,也考查了利用函数零点与方程的应用问题,是综合性题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{3}$,0) | B. | ($\frac{2π}{3}$,0) | C. | ($\frac{π}{3}$,1) | D. | ($\frac{2π}{3}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $π+\sqrt{3}π$ | B. | $\frac{4}{3}π$ | C. | $2π+\frac{{2\sqrt{3}}}{3}π$ | D. | $π+\frac{{\sqrt{3}}}{3}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若a≥b,则a2≥b2”的逆否命题为“若a2≤b2,则a≤b” | |
| B. | “x=1”是“x2-3x+2=0”的必要不充分条件 | |
| C. | 若p∧q为假命题,则p,q均为假命题 | |
| D. | 对于命题p:?x∈R,x2+x+1>0,则¬p:?x0∈R,x02+x0+1≤0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com