| A. | $\frac{43}{4}$ | B. | $\frac{49}{4}$ | C. | $\frac{37+6\sqrt{3}}{4}$ | D. | $\frac{37+2\sqrt{33}}{4}$ |
分析 由$|\overrightarrow{DA}|$=$|\overrightarrow{DB}|$=$|\overrightarrow{DC}|$,可得D为△ABC的外心,又$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{DC}$•$\overrightarrow{DA}$,可得可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.运用向量的数量积定义可得△ABC的边长,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,求得B,C的坐标,再设P(cosθ,sinθ),(0≤θ<2π),由中点坐标公式可得M的坐标,运用两点的距离公式可得BM的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值.
解答
解:由$|\overrightarrow{DA}|$=$|\overrightarrow{DB}|$=$|\overrightarrow{DC}|$,可得D为△ABC的外心,
又$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{DC}$•$\overrightarrow{DA}$,可得
$\overrightarrow{DB}$•($\overrightarrow{DA}$-$\overrightarrow{DC}$)=0,$\overrightarrow{DC}$•($\overrightarrow{DB}$-$\overrightarrow{DA}$)=0,
即$\overrightarrow{DB}$•$\overrightarrow{AC}$=$\overrightarrow{DC}$•$\overrightarrow{AB}$=0,
即有$\overrightarrow{DB}$⊥$\overrightarrow{AC}$,$\overrightarrow{DC}$⊥$\overrightarrow{AB}$,可得D为△ABC的垂心,
则D为△ABC的中心,即△ABC为正三角形.
由$\overrightarrow{DA}$•$\overrightarrow{DB}$=-2,即有|$\overrightarrow{DA}$|•|$\overrightarrow{DA}$|cos120°=-2,
解得|$\overrightarrow{DA}$|=2,△ABC的边长为4cos30°=2$\sqrt{3}$,
以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,
可得B(3,-$\sqrt{3}$),C(3,$\sqrt{3}$),D(2,0),
由$|\overrightarrow{AP}|$=1,可设P(cosθ,sinθ),(0≤θ<2π),
由$\overrightarrow{PM}$=$\overrightarrow{MC}$,可得M为PC的中点,即有M($\frac{3+cosθ}{2}$,$\frac{\sqrt{3}+sinθ}{2}$),
则|$\overrightarrow{BM}$|2=(3-$\frac{3+cosθ}{2}$)2+($\frac{\sqrt{3}+sinθ}{2}$+$\sqrt{3}$)2
=$\frac{(3-cosθ)^{2}}{4}$+$\frac{(3\sqrt{3}+sinθ)^{2}}{4}$=$\frac{37-6cosθ+6\sqrt{3}sinθ}{4}$
=$\frac{37+12sin(θ-\frac{π}{6})}{4}$,
当sin(θ-$\frac{π}{6}$)=1,即θ=$\frac{2π}{3}$时,取得最大值,且为$\frac{49}{4}$.
故选:B.
点评 本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com