精英家教网 > 高中数学 > 题目详情
18.若{an}是等差数列,若a1+a10=21,S10=105.

分析 利用等差数列的前n项和公式即可得出.

解答 解:∵{an}是等差数列,若a1+a10=21,
∴S10=$\frac{10({a}_{1}+{a}_{10})}{2}$=5×21=105.
故答案为:105.

点评 本题考查了等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知非零向量$\overrightarrow{m}$,$\overrightarrow{n}$满足4|$\overrightarrow{m}$|=3|$\overrightarrow{n}$|,cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{1}{3}$.若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),则实数t的值为(  )
A.4B.-4C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面内,定点A,B,C,D满足$|\overrightarrow{DA}|$=$|\overrightarrow{DB}|$=$|\overrightarrow{DC}|$,$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,动点P,M满足$|\overrightarrow{AP}|$=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,则|$\overrightarrow{BM}$|2的最大值是(  )
A.$\frac{43}{4}$B.$\frac{49}{4}$C.$\frac{37+6\sqrt{3}}{4}$D.$\frac{37+2\sqrt{33}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设抛物线$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C($\frac{7}{2}$p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3$\sqrt{2}$,则p的值为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°,求($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-3$\overrightarrow{b}$)=-93.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(  )
A.$\frac{8}{15}$B.$\frac{1}{8}$C.$\frac{1}{15}$D.$\frac{1}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1-7分别对应年份2008-2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,
回归方程$\widehat{y}$=$\widehat{a}$+$\widehat{b}$t中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a=${2}^{\frac{4}{3}}$,b=${3}^{\frac{2}{3}}$,c=${25}^{\frac{1}{3}}$,则(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数u、v满足不等式组$\left\{\begin{array}{l}{3u+2v-12≥0}\\{9u-4v+36≥0}\\{u-4≤0}\end{array}\right.$,则z=$\sqrt{\frac{{u}^{2}}{4}+\frac{{v}^{2}}{9}}$的最小值等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案