精英家教网 > 高中数学 > 题目详情
19.设z=$\frac{3+2i}{i}$,其中i为虚数单位,则Imz=-3.

分析 利用复数代数形式的乘除运算法则,先求出复数z的最简形式,由此能求出Imz.

解答 解:∵Z=$\frac{3+2i}{i}$=$\frac{3i+2{i}^{2}}{{i}^{2}}$=$\frac{3i-2}{-1}$=2-3i,
∴Imz=-3.
故答案为:-3.

点评 本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数的乘除运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在平面内,定点A,B,C,D满足$|\overrightarrow{DA}|$=$|\overrightarrow{DB}|$=$|\overrightarrow{DC}|$,$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,动点P,M满足$|\overrightarrow{AP}|$=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,则|$\overrightarrow{BM}$|2的最大值是(  )
A.$\frac{43}{4}$B.$\frac{49}{4}$C.$\frac{37+6\sqrt{3}}{4}$D.$\frac{37+2\sqrt{33}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1-7分别对应年份2008-2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,
回归方程$\widehat{y}$=$\widehat{a}$+$\widehat{b}$t中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a=${2}^{\frac{4}{3}}$,b=${3}^{\frac{2}{3}}$,c=${25}^{\frac{1}{3}}$,则(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.
(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a>0,b>0,若关于x,y的方程组$\left\{\begin{array}{l}{ax+y=1}\\{x+by=1}\end{array}\right.$无解,则a+b的取值范围为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.时钟从6时走到9时,时针旋转了$-\frac{π}{2}$弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数u、v满足不等式组$\left\{\begin{array}{l}{3u+2v-12≥0}\\{9u-4v+36≥0}\\{u-4≤0}\end{array}\right.$,则z=$\sqrt{\frac{{u}^{2}}{4}+\frac{{v}^{2}}{9}}$的最小值等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.六人排成一排照相,计算:
(1)共有多少种站法?
(2)求甲、乙两人正好相邻的概率;
(3)求甲、乙两人不相邻的概率.

查看答案和解析>>

同步练习册答案