精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=2,an+1=an+cn(c是不为零的常数,n=1,2,3,…),且a1,a2,a3成等比数列.
(1)求c的值;
(2)求{an}的通项公式;
(3)设数列{
an-cn•cn
}
的前n项之和为Tn,求Tn
分析:(1)先根据a1=2,an+1=an+cn,令n=2得到a2,令n=3得到a3.因为a1,a2,a3成等比数列,所以a22=a1•a3,代入即可求出c的值;(2)当n≥2时,a2-a1=c,a3-a2=2c,…,an-an-1=(n-1)c,等号左边相加等于等号右边相加,并根据等差数列的前n项和的公式得到an即可;
(3)设bn=
an-c
n•cn
=(n-1)(
1
2
)
n
.然后列举出Tn的各项得①,都乘以
1
2
1
2
Tn②,利用①-②即可得到Tn的通项.
解答:解:(1)a1=2,a2=2+c,a3=2+3c.
∵a1,a2,a3成等比数列,
∴(2+c)2=2(2+3c),
解得c=0或c=2.
∵c≠0,∴c=2.

(2)当n≥2时,由于a2-a1=c,a3-a2=2c,an-an-1=(n-1)c,
∴an-a1=[1+2+…+(n-1)]c=
n(n-1)
2
c

又a1=2,c=2,故有an=2+n(n-1)=n2-n+2(n=2,3,).
当n=1时,上式也成立.
∴an=n2-n+2(n=1,2).

(3)令bn=
an-c
n•cn
=(n-1)(
1
2
)n
.Tn=b1+b2+b3+…+bn=0+(
1
2
)
2
+2×(
1
2
)
3
+3×(
1
2
)
4
+…+(n-1)(
1
2
)
n

1
2
Tn=0+(
1
2
)
3
+2×(
1
2
)
4
+…+(n-2)(
1
2
)
n
+(n-1)(
1
2
)
n+1

①-②得Tn=1-(
1
2
)n-1-
n-1
2n
点评:考查学生灵活运用等比数列性质的能力,灵活运用等差数列的前n项和公式求数列的通项公式,会利用错位相减法求数列的通项.以及灵活运用数列递推式解决数学问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
12
an-1+1(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,则
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,对?n∈N*an+2an+3•2n,an+1≥2an+1,则a2=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)如果一个数列{an}对任意正整数n满足an+an+1=h(其中h为常数),则称数列{an}为等和数列,h是公和,Sn是其前n项和.已知等和数列{an}中,a1=1,h=-3,则S2008=
-3012
-3012

查看答案和解析>>

同步练习册答案