精英家教网 > 高中数学 > 题目详情
10.若向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(3,m),$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow{b}$),则实数m=-6.

分析 利用向量共线定理即可得出.

解答 解:$\overrightarrow{a}+\overrightarrow{b}$=(2,2+m).
∵$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow{b}$),∴-(2+m)-4=0,解得m=-6.
故答案为:-6.

点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设集合M={x|-1≤x≤2},N={x|log2x>0},则M∪N=(  )
A.[-1,+∞)B.(1,+∞)C.(-1,2)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.甲、乙两种食物的维生素含量如表:
维生素A(单位/kg)维生素B(单位/kg)
35
42
分别取这两种食物若干并混合,且使混合物中维生素A,B的含量分别不低于100,120单位,则混合物质量的最小值为30kg.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{mx}{{{x^2}+n}}$(m,n∈R)在x=1处取到极值2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数$g(x)=lnx+\frac{a}{x}$,若对任意的x1∈[-1,1],总存在x2∈[1,e](e为自然对数的底数),使得$g({x_2})≤f({x_1})+\frac{7}{2}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设x1,x2,…,xn的平均数为$\overline{x}$,标准差是s,则另一组数2x1-3,2x2-3,…,2xn-3的平均数和标准差分别是(  )
A.2$\overline{x}$,4sB.2$\overline{x}$-3,4sC.2$\overline{x}$-3,2sD.2$\overline{x}$,s

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数 f(x) 在 R上可导,其导函数为 f′(x),且函数 y=(1-x)f′(x) 的图象如图所示,则下列结论中一定成立的是(  )
A.函数 f(x) 有极大值f(2)和极小值f(1)B.函数f(x) 有极大值 f(2)和极小值 f(-2)
C.函数 f(x)有极大值f(-2)和极小值 f(1)D.函数f(x)  有极大值f(-2)和极小值 f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在样本的频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其它8个小长方形面积的一半,已知样本的容量是90,则中间一组的频数是30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow a=(cosx,sinx)$,$\overrightarrow b=(3,-\sqrt{3})$,记$f(x)=\overrightarrow a•\overrightarrow b$
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)若x∈[0,π],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果$|x|≤\frac{π}{4}$,那么函数f(x)=-cos2x+sinx的值域是(  )
A.$[\frac{{1-\sqrt{2}}}{2},\frac{{\sqrt{2}-1}}{2}]$B.$[-\frac{{\sqrt{2}+1}}{2},\frac{{\sqrt{2}-1}}{2}]$C.$[-\frac{5}{4},\frac{{\sqrt{2}+1}}{2}]$D.$[-\frac{5}{4},\frac{{\sqrt{2}-1}}{2}]$

查看答案和解析>>

同步练习册答案