精英家教网 > 高中数学 > 题目详情
3.复数z满足(1-i)z=m+i (m∈R,i为虚数单位),在复平面上z对应的点不可能在    (  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由(1-i)z=m+i,得$z=\frac{m+i}{1-i}$,再利用复数代数形式的乘除运算化简复数z,令复数的实部大于0,虚部小于0,得到不等式无解,即对应的点不在第四象限.

解答 解:由(1-i)z=m+i,
得$z=\frac{m+i}{1-i}$=$\frac{(m+i)(1+i)}{(1-i)(1+i)}=\frac{(m-1)+(m+1)i}{2}$=$\frac{m-1}{2}+\frac{m+1}{2}i$,
当m-1>0且m+1>0时,有解:m>1;
当m-1<0且m+1>0时,有解:-1<m<1;
当m-1<0且m+1<0时,有解:m<-1;
当m-1>0且m+1<0时,无解.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax-lnx,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a=e2,当x∈(0,e]时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z在复平面内对应的点为(-1,1),则复数$\frac{z+3}{z+2}$的模为(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且4S=(a+b)2-c2,则sin($\frac{π}{4}$+C)等于(  )
A.1B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.从-1,0,1,3,4,这五个数中任选一个数记为a,则使双曲线y=$\frac{7-3a}{x}$在第一、三象限且不等式组$\left\{\begin{array}{l}{2x+3>9}\\{x-a<0}\end{array}\right.$无解的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,某几何体的三视图由半径相同的圆和扇形构成,若府视图中扇形的面积为3π,則该几何体的体积等于(  )
A.B.$\frac{16π}{3}$C.D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\left\{\begin{array}{l}{x^2}-2ax,x≥2\\ 4x-6,x<2\end{array}$在定义域R上是增函数,则a的取值范围是(  )
A.a≥0B.a≤0C.$a≤\frac{1}{2}$D.a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=4x-2x+1-b(b∈R).
(1)若f(x)有零点,求实数b的取值范围;
(2)当f(x)有零点时,讨论f(x)有零点的个数,并求出f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知{an}为等差数列,若a1+a5+a9=8π,则cos(a2+a8)=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案