| A. | 1 | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 利用三角形面积公式表示出S,利用余弦定理表示出cosC,变形后代入已知等式,化简求出cosC的值,进而求出sinC的值,利用两角和的正弦函数公式即可计算得解.
解答 解:∵S=$\frac{1}{2}$absinC,cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
∴2S=absinC,a2+b2-c2=2abcosC,
代入已知等式得:4S=a2+b2-c2+2ab,即2absinC=2abcosC+2ab,
∵ab≠0,∴sinC=cosC+1,
∵sin2C+cos2C=1,
∴2cos2C+2cosC=0,解得:cosC=-1(不合题意,舍去),cosC=0,
∴sinC=1,
则sin($\frac{π}{4}$+C)=$\frac{\sqrt{2}}{2}$(sinC+cosC)=$\frac{\sqrt{2}}{2}$.
故选:C.
点评 此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,两角和的正弦函数公式的应用,熟练掌握余弦定理是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $(-1,\frac{3}{2})$ | B. | (-3,+∞) | C. | (3,+∞) | D. | $(\frac{3}{2},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1<a≤0 | B. | -1<a<0 | C. | a>-1 | D. | 0<a≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | c>a>b | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com