精英家教网 > 高中数学 > 题目详情
20.写出下列程序运行后的结果.
(1)

输出结果为1,3,5,7,9;
(2)
输出结果为1.

分析 (1)由for语句的知识,可知步长为2,易得结果;
(2)易知步长为-1,且输出最后一个值.

解答 解:
(1)易知步长为2,故依次输出1,3,5,7,9;
故答案为:1,3,5,7,9;
(2)易知步长为-1,故x的取值依次为5,4,3,2,1,最后一个值为1,
故答案为:1.

点评 此题考查伪代码中for语句的知识,属于基础题.解题时注意“end”的位置,此为本题易错点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x-2cosx在区间$[-\frac{π}{2},0]$上的最小值是(  )
A.$-\frac{π}{2}$B.-2C.$-\frac{π}{3}-1$D.$-\frac{π}{6}-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且4S=(a+b)2-c2,则sin($\frac{π}{4}$+C)等于(  )
A.1B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,某几何体的三视图由半径相同的圆和扇形构成,若府视图中扇形的面积为3π,則该几何体的体积等于(  )
A.B.$\frac{16π}{3}$C.D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\left\{\begin{array}{l}{x^2}-2ax,x≥2\\ 4x-6,x<2\end{array}$在定义域R上是增函数,则a的取值范围是(  )
A.a≥0B.a≤0C.$a≤\frac{1}{2}$D.a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是在[-1,1]上的单调递增函数,且f(m2)>f(m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=4x-2x+1-b(b∈R).
(1)若f(x)有零点,求实数b的取值范围;
(2)当f(x)有零点时,讨论f(x)有零点的个数,并求出f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.要得到函数f(x)=sin2x+$\sqrt{3}$cos2x的图象,可将y=2sin2x的图象向左平移多少个单位(  )
A.$\frac{π}{6}$个B.$\frac{π}{3}$个C.$\frac{π}{4}$个D.$\frac{π}{12}$个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{2}$$\frac{3π}{2}$$\frac{5π}{2}$$\frac{7π}{2}$$\frac{9π}{2}$
Asin(ωx+φ)0  30-30
(1)请将如表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动$\frac{π}{3}$个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.

查看答案和解析>>

同步练习册答案