精英家教网 > 高中数学 > 题目详情
8.如图,某几何体的三视图由半径相同的圆和扇形构成,若府视图中扇形的面积为3π,則该几何体的体积等于(  )
A.B.$\frac{16π}{3}$C.D.$\frac{4π}{3}$

分析 1由三视图可知:这个几何体是球去掉$\frac{1}{4}$剩下的几何体.利用球的体积计算公式即可得出.

解答 解:由三视图可知:这个几何体是球去掉$\frac{1}{4}$剩下的几何体.
∴这个几何体的体积=$\frac{3}{4}×\frac{4}{3}$π×23=8π,
故选:A.

点评 本题考查了球的三视图、球的体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若x>0,则${x^2}+\frac{3}{2x}$的最小值为(  )
A.1B.$\sqrt{6}$C.$\frac{{3\root{3}{9}}}{4}$D.$\frac{{3\root{3}{36}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|$\frac{1}{4}$≤2x≤128},B={y|y=log2x,x∈[$\frac{1}{8}$,32]},
(1)求A∩B;A∪B,
(2)若D={x|x>6m+1},且(A∪B)∩D=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2+bx+c(b>a),且f(x)≥0对任意实数x都成立,若$\frac{f(-2)}{f(2)-f(0)}$取到最小值时,有
(1)当a=1,求f(x);
(2)设g(x)=|f(x)-a|,对任意的x1,x2∈[-3a,-a]都有|g(x1)-g(x2)|≤2a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z满足(1-i)z=m+i (m∈R,i为虚数单位),在复平面上z对应的点不可能在    (  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义集合A、B的一种运算:A*B={x|x1×x2,其中x1∈A,x2∈B},若A={1,2,3,5},B={1,2},则A*B中的所有元素之和为为(  )
A.30B.31C.32D.34

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.写出下列程序运行后的结果.
(1)

输出结果为1,3,5,7,9;
(2)
输出结果为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2sin(ωx+φ),ω>0,|φ|<$\frac{π}{2}$,满足f(x)+f(x+$\frac{π}{2}}$)=0对任意的x∈R恒成立,且x=$\frac{π}{6}$为其图象的一条对称轴方程,则f(${\frac{11π}{4}}$)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用平行于圆锥底面的截面去截圆锥,所得小圆锥的侧面积与原来大圆锥的侧面积的比是$\frac{1}{2}$,则小圆锥的高与大圆锥的高的比是(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案