| A. | 1 | B. | $\sqrt{6}$ | C. | $\frac{{3\root{3}{9}}}{4}$ | D. | $\frac{{3\root{3}{36}}}{4}$ |
分析 由题意可得y=x2+$\frac{3}{4x}$$\frac{3}{4x}$,然后利用基本不等式可得最小值.
解答 解:∵x>0,∴函数y=${x^2}+\frac{3}{2x}$=x2+$\frac{3}{4x}$$+\frac{3}{4x}$≥3$\root{3}{{x}^{2}•\frac{3}{4x}•\frac{3}{4x}}$=$\frac{3\root{3}{36}}{4}$,
当且仅当x2=$\frac{3}{4x}$即x=$\frac{\root{3}{6}}{2}$时取等号,
∴x>0,则${x^2}+\frac{3}{2x}$的最小值为$\frac{3\root{3}{36}}{4}$,
故选:D.
点评 本题考查基本不等式求最值,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5.2 | B. | 6.6 | C. | 7.1 | D. | 8.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{π}{2}$ | B. | -2 | C. | $-\frac{π}{3}-1$ | D. | $-\frac{π}{6}-\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | $\frac{16π}{3}$ | C. | 4π | D. | $\frac{4π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com