精英家教网 > 高中数学 > 题目详情
3.若x>0,则${x^2}+\frac{3}{2x}$的最小值为(  )
A.1B.$\sqrt{6}$C.$\frac{{3\root{3}{9}}}{4}$D.$\frac{{3\root{3}{36}}}{4}$

分析 由题意可得y=x2+$\frac{3}{4x}$$\frac{3}{4x}$,然后利用基本不等式可得最小值.

解答 解:∵x>0,∴函数y=${x^2}+\frac{3}{2x}$=x2+$\frac{3}{4x}$$+\frac{3}{4x}$≥3$\root{3}{{x}^{2}•\frac{3}{4x}•\frac{3}{4x}}$=$\frac{3\root{3}{36}}{4}$,
当且仅当x2=$\frac{3}{4x}$即x=$\frac{\root{3}{6}}{2}$时取等号,
∴x>0,则${x^2}+\frac{3}{2x}$的最小值为$\frac{3\root{3}{36}}{4}$,
故选:D.

点评 本题考查基本不等式求最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数f(x)的定义域为开区间(a,b),其导函数f'(x)在(a,b)图象如图所示,则函数f(x)在开区间(a,b)内的极小值的个数是1个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的离心率为2,则a等于(  )
A.2B.$\sqrt{3}$C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.放射性元素一般都有一个半衰期(剩留量为最初质量的一半所需的时间).已知一种放射性元素的质量按每年10%衰减,那么这种放射性元素的半衰期是(  )年(精确到0.1,已知lg2=0.3010,lg3=0.4771).
A.5.2B.6.6C.7.1D.8.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax-lnx,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a=e2,当x∈(0,e]时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某地有A、B、C、D四人先后感染了某种传染病,其中只有A到过传染地区,B肯定是受A传染的.对于C,因为难以断定他是受A还是受B传染的,于是假定他受A和受B传染的概率都是$\frac{1}{2}$,同样也假定D受A、B和C传染的概率都是$\frac{1}{3}$,在这种假定之下,B、C、D中直接受A传染的人数为2的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x-2cosx在区间$[-\frac{π}{2},0]$上的最小值是(  )
A.$-\frac{π}{2}$B.-2C.$-\frac{π}{3}-1$D.$-\frac{π}{6}-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a=2”是“函数f(x)=(x-a)2在区间[2,+∞)上为增函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,某几何体的三视图由半径相同的圆和扇形构成,若府视图中扇形的面积为3π,則该几何体的体积等于(  )
A.B.$\frac{16π}{3}$C.D.$\frac{4π}{3}$

查看答案和解析>>

同步练习册答案