精英家教网 > 高中数学 > 题目详情
9.要得到函数f(x)=sin2x+$\sqrt{3}$cos2x的图象,可将y=2sin2x的图象向左平移多少个单位(  )
A.$\frac{π}{6}$个B.$\frac{π}{3}$个C.$\frac{π}{4}$个D.$\frac{π}{12}$个

分析 根据两角和差的正弦公式求得 f(x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:由于函数f(x)=sin2x+$\sqrt{3}$cos2x=2($\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x)=2sin(2x+$\frac{π}{3}$),
故将y=2sin2x的图象向左平移$\frac{π}{6}$个单位,可得 f(x)=2sin(2x+$\frac{π}{3}$)的图象,
故选:A.

点评 本题主要考查两角和差的正弦公式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|$\frac{1}{4}$≤2x≤128},B={y|y=log2x,x∈[$\frac{1}{8}$,32]},
(1)求A∩B;A∪B,
(2)若D={x|x>6m+1},且(A∪B)∩D=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.写出下列程序运行后的结果.
(1)

输出结果为1,3,5,7,9;
(2)
输出结果为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2sin(ωx+φ),ω>0,|φ|<$\frac{π}{2}$,满足f(x)+f(x+$\frac{π}{2}}$)=0对任意的x∈R恒成立,且x=$\frac{π}{6}$为其图象的一条对称轴方程,则f(${\frac{11π}{4}}$)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图所示,则此时几何体的体积是(  )
A.B.$\frac{4π}{3}$C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式f(x)=ax2+x-c>0的解集为{x|x>1或x<-2},则函数y=f(-x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}满足a1=1,${a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$(n∈N+).
(1)证明:数列$\left\{{\frac{2^n}{a_n}}\right\}$是等差数列;
(2)求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用平行于圆锥底面的截面去截圆锥,所得小圆锥的侧面积与原来大圆锥的侧面积的比是$\frac{1}{2}$,则小圆锥的高与大圆锥的高的比是(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a,b,c是△ABC三个内角A,B,C所对应的边,且lgsinA,lgsinB,lgsinC成等差数列,那么直线xsinC-ysinA-a=0与直线xsin2B+ysin2C-c=0的位置关系(  )
A.平行B.垂直C.相交但不垂直D.重合

查看答案和解析>>

同步练习册答案