精英家教网 > 高中数学 > 题目详情
14.不等式f(x)=ax2+x-c>0的解集为{x|x>1或x<-2},则函数y=f(-x)的图象大致为(  )
A.B.C.D.

分析 由已知的不等式的解集得到a 的符号,由解集端点得到对应方程的根,求出a,c.得到所求.

解答 解:由不等式f(x)=ax2+x-c>0的解集为{x|x>1或x<-2},可得a>0,
且$\left\{\begin{array}{l}{1-2=-\frac{1}{a}}\\{-2×1=\frac{-c}{a}}\end{array}\right.$.
解得a=1,c=2,故f(x)=x2+x-2,故 f(-x)=x2 -x-2.
故函数y=f(-x)的图象为B;
故选B

点评 本题主要考查一元二次不等式的解法,函数的图象,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(0,1),$\overrightarrow{b}$=(2,-1),则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.2$\sqrt{2}$B.$\sqrt{5}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是在[-1,1]上的单调递增函数,且f(m2)>f(m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(理科)在一次篮球定点投篮训练中,规定每人最多投3次,在A处每投进一球得3分;在B处每投进一球得2分,如果前两次得分之和超过3分就停止投篮;否则投第3次,某同学在A处的抽中率q1=0.25,在B处的抽中率为q2,该同学选择现在A处投第一球,以后都在B处投,且每次投篮都互不影响,用X表示该同学投篮训练结束后所得的总分,其分布列为:
X02345
P0.03P2P3P4P5
(1)求q2的值;
(2)求随机变量X的数学期望E(X);
(3)试比较该同学选择上述方式投篮得分超过3分与选择都在B处投篮得分超过3分的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.要得到函数f(x)=sin2x+$\sqrt{3}$cos2x的图象,可将y=2sin2x的图象向左平移多少个单位(  )
A.$\frac{π}{6}$个B.$\frac{π}{3}$个C.$\frac{π}{4}$个D.$\frac{π}{12}$个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)是偶函数,它在(0,+∞)上是减函数,若f(lgx)>f(1),则x的取值范围是(  )
A.($\frac{1}{10}$,1)B.(0,$\frac{1}{10}$)∪(1,+∞)C.($\frac{1}{10}$,10)D.(0,1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,点D为边BC的中点,∠BAD=90°.
(1)若cosB=$\frac{2}{3}$,求cosC;
(2)求cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=(  )
A.3B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.化简$\frac{sin(α+π)cos(π-α)sin(\frac{5π}{2}-α)}{tan(-α)co{s}^{3}(-α-2π)}$=-1.

查看答案和解析>>

同步练习册答案