精英家教网 > 高中数学 > 题目详情
6.在△ABC中,点D为边BC的中点,∠BAD=90°.
(1)若cosB=$\frac{2}{3}$,求cosC;
(2)求cosC的取值范围.

分析 (1)设AB=2,可求BD,BC的值,利用余弦定理可求AC,进而由余弦定理可求cosC的值.
(2)设BD=CD=x,AC=y,由正弦定理得,$\frac{y}{sinB}=\frac{2x}{sin(B+C)}$,$\frac{y}{cosB}=\frac{x}{cos(B+C)}$,两式相除,利用两角和与差的正切函数公式可求tanC=$\frac{tanB}{{1+2{{tan}^2}B}}=\frac{1}{cotB+2tanB}$,结合B的范围,进而计算得解.

解答 (本题满分为12分)
解:(1)在Rt△ABD中,设AB=2,
∵$cosB=\frac{2}{3}$,
∴BD=3,BC=2BD=6,
在△ABC中,由余弦定理得,
AC2=AB2+BC2-2AB•BC•cosB=22+62$-2•2•6•\frac{2}{3}=24$,
∴$AC=2\sqrt{6}$,
在△ABC中,由余弦定理得,$cosC=\frac{{A{C^2}+B{C^2}-A{B^2}}}{2AC•BC}=\frac{{24+{6^2}-{2^2}}}{{2•2\sqrt{6}•6}}=\frac{{7\sqrt{6}}}{18}$.----------(6分)
(2)设BD=CD=x,AC=y,由题可得,$∠ADC=B+\frac{π}{2},∠DAC=π-∠ADC-C=\frac{π}{2}-B-C$,
在△ABC中,由正弦定理得,$\frac{AC}{sinB}=\frac{BC}{sin∠BAC}$,
∴$\frac{y}{sinB}=\frac{2x}{sin(B+C)}$,①,
在△ADC中,由正弦定理得,$\frac{AC}{sin∠ADC}=\frac{CD}{sin∠DAC}$,
∴$\frac{y}{{sin(B+\frac{π}{2})}}=\frac{x}{{sin(\frac{π}{2}-B-C)}}$,即$\frac{y}{cosB}=\frac{x}{cos(B+C)}$,②,
②÷①得,$tanB=\frac{1}{2}tan(B+C)$,
∴tan(B+C)=2tanB,
∴tanC=tan((B+C)-B)=$\frac{tan(B+C)-tanB}{1+tan(B+C)•tanB}=\frac{2tanB-tanB}{1+2tanB•tanB}$=$\frac{tanB}{{1+2{{tan}^2}B}}=\frac{1}{cotB+2tanB}$,
由题知$B∈(0,\frac{π}{2})$,tanB∈(0,+∞),$cotB+2tanB∈[{2\sqrt{2},+∞})$,
∴$tanC=\frac{1}{cotB+2tanB}∈({0,\frac{{\sqrt{2}}}{4}}]$,可求$cosC∈[{\frac{{2\sqrt{2}}}{3},1})$.----------(12分)

点评 本题主要考查了余弦定理,正弦定理,两角和与差的正切函数公式,同角三角函数基本关系式在三角函数求值中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2+bx+c(b>a),且f(x)≥0对任意实数x都成立,若$\frac{f(-2)}{f(2)-f(0)}$取到最小值时,有
(1)当a=1,求f(x);
(2)设g(x)=|f(x)-a|,对任意的x1,x2∈[-3a,-a]都有|g(x1)-g(x2)|≤2a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2sin(ωx+φ),ω>0,|φ|<$\frac{π}{2}$,满足f(x)+f(x+$\frac{π}{2}}$)=0对任意的x∈R恒成立,且x=$\frac{π}{6}$为其图象的一条对称轴方程,则f(${\frac{11π}{4}}$)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式f(x)=ax2+x-c>0的解集为{x|x>1或x<-2},则函数y=f(-x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}满足a1=1,${a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$(n∈N+).
(1)证明:数列$\left\{{\frac{2^n}{a_n}}\right\}$是等差数列;
(2)求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A={x||x-1|<1},B={y∈R|y=2x+1,x∈R},则A∩∁RB=(  )
A.(0,2)B.[1,2)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用平行于圆锥底面的截面去截圆锥,所得小圆锥的侧面积与原来大圆锥的侧面积的比是$\frac{1}{2}$,则小圆锥的高与大圆锥的高的比是(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,以原点o为极点,x轴的非负半轴为极轴,建立极坐标系已知直线l的方程为ρ(3cost-4sint)=1(t为参数),圆C的参数方程为$\left\{\begin{array}{l}{x=-4+cosθ}\\{y=3+sinθ}\end{array}\right.$(θ为参数)
(I)求直线l的直角坐标方程和圆C的普通方程:
(II)若点P是圆C上的动点,求点P到直线l的距离最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设U=R,A={x|log2x>1},B={x|2x>1},则B∩∁UA=(  )
A.{x|x>0}B.{x|x>2}C.{x|0<x≤2}D.{x|0≤x<1}

查看答案和解析>>

同步练习册答案