5£®ÔÚ¼«×ø±êϵÖУ¬ÇúÏßC1£º¦Ñsin2¦È=4cos¦È£¬ÒÔ¼«µãÎª×ø±êÔ­µã£¬¼«ÖáΪÖáÕý°ëÖὨÁ¢Ö±½Ç×ø±êϵxOy£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨1£©ÇóC1¡¢C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÇúÏßC1ÓëÇúÏßC2½»ÓÚA¡¢BÁ½µã£¬ÇÒ¶¨µãPµÄ×ø±êΪ£¨2£¬0£©£¬Çó|PA|•|PB|µÄÖµ£®

·ÖÎö £¨1£©ÇúÏßC1µÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñ2sin2¦È=4¦Ñcos¦È£¬ÓÉ´ËÄÜÇó³öÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£¬ÇúÏßC2µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬ÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÇúÏßC2µÄ²ÎÊý·½³Ì´úÈëy2=4x£¬µÃ3t2-8t-32=0£¬ÓÉ´ËÄÜÇó³ö|PA|•|PB|µÄÖµ£®

½â´ð £¨ ±¾ Ìâ Âú ·Ö 10 ·Ö £©
½â£º£¨1£©¡ßÇúÏßC1£º¦Ñsin2¦È=4cos¦È£¬¡à¦Ñ2sin2¦È=4¦Ñcos¦È£¬
¡àÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪy2=4x£®
¡ßÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
¡àÇúÏßC2ÏûÈ¥²ÎÊýt£¬µÃÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ$\sqrt{3}x-y-2\sqrt{3}$=0£®
£¨2£©ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëy2=4x£¬
µÃ$\frac{3}{4}{t}^{2}$=8+2t£¬¼´3t2-8t-32=0£¬
¡÷=£¨-8£©2-4¡Á3¡Á£¨-32£©=448£¾0£¬
t1•t2=-$\frac{32}{3}$£¬
¡à|PA|•|PB|=|t1|•|t2|=|t1t2|=$\frac{32}{3}$£®

µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶εij˻ýµÄÇ󷨣¬¿¼²éÖ±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªan=2n-1£¨n¡ÊN*£©£¬Ôò$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+¡­+$\frac{1}{{a}_{9}{a}_{10}}$=$\frac{9}{19}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=2x2+ax-b£¨a£¬b¡ÊR£©µÄÁ½¸öÁãµã·Ö±ðÔÚÇø¼ä$£¨\frac{1}{2}£¬1£©$ºÍ£¨1£¬2£©ÄÚ£¬Ôòz=a+bµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®0B£®-4C£®$-\frac{14}{3}$D£®-6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow{a}$=£¨1£¬2£©£¬$\overrightarrow{b}$=£¨-2£¬m£©£¬ÇÒ|$\overrightarrow{a}+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|£¬Ôòm=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªf£¨x£©=cosx£¬$Ôòf'£¨\frac{¦Ð}{2}£©$=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÏòÁ¿$|{\overrightarrow a}|=1£¬|{\overrightarrow b}|=2$£®
£¨¢ñ£©Èô$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ$\frac{¦Ð}{3}$£¬Çó$|{\overrightarrow a+2\overrightarrow b}|$£»
£¨¢ò£©Èô$£¨2\overrightarrow a-\overrightarrow b£©•£¨3\overrightarrow a+\overrightarrow b£©=3$£¬Çó$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=xlnx+2£¬g£¨x£©=x2-mx£®
£¨1£©Çóf£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚ[t£¬t+2]£¨t£¾0£©ÉϵÄ×îСֵ£»
£¨3£©Èô´æÔÚ${x_0}¡Ê[{\frac{1}{e}£¬e}]$ʹµÃmf'£¨x£©+g£¨x£©¡Ý2x+m³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=x2-ax£¨a¡Ù0£©£¬g£¨x£©=lnx£¬f£¨x£©µÄͼÏóÔÚËüÓëxÖáÒìÓÚÔ­µãµÄ½»µãM´¦µÄÇÐÏßΪl1£¬g£¨x-1£©µÄͼÏóÔÚËüÓëxÖáµÄ½»µãN´¦µÄÇÐÏßΪl2£¬ÇÒl1Óël2ƽÐУ®
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÒÑÖªt¡ÊR£¬Çóº¯Êýy=f£¨xg£¨x£©+t£©ÔÚx¡Ê[1£¬e]ÉϵÄ×îСֵh£¨t£©£»
£¨3£©ÁîF£¨x£©=g£¨x£©+g¡ä£¨x£©£¬¸ø¶¨x1£¬x2¡Ê£¨1£¬+¡Þ£©£¬x1£¼x2£¬¶ÔÓÚÁ½¸ö´óÓÚ1µÄÕýÊý¦Á£¬¦Â£¬´æÔÚʵÊýmÂú×㣺¦Á=mx1+£¨1-m£©x2£¬¦Â=£¨1-m£©x1+mx2£¬²¢ÇÒʹµÃ²»µÈʽ|F£¨¦Á£©-F£¨¦Â£©|£¼|F£¨x1£©-F£¨x2£©|ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=lnx-x£®
£¨1£©Ö¤Ã÷£º¶ÔÈÎÒâµÄx1£¬x2¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐ|f£¨x1£©|£¾$\frac{ln{x}_{2}}{{x}_{2}}$£»
£¨2£©Éèm£¾n£¾0£¬±È½Ï$\frac{f£¨m£©+m-£¨f£¨n£©+n£©}{m-n}$Óë$\frac{m}{{m}^{2}-{n}^{2}}$µÄ´óС£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸