分析 运用分类讨论可判断①②不成立;由函数的单调性可知④不成立;运用正弦函数的单调性可得③对;由x-2>0,运用基本不等式可知⑤对.
解答 解:①y=x+$\frac{1}{x}$,当x>0时,y有最小值2;x<0时,有最大值-2;
②y=lgx+logx10(x>0,x≠1),x>1时,有最小值2;0<x<1时,有最大值-2;
③y=sinx+$\frac{1}{sinx}$(0<x≤$\frac{π}{2}$),t=sinx(0<t≤1),y=t+$\frac{1}{t}$≥2$\sqrt{t•\frac{1}{t}}$=2,x=$\frac{π}{2}$最小值取得2,成立;
④y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$,t=$\sqrt{{x}^{2}+2}$(t≥$\sqrt{2}$),y=t+$\frac{1}{t}$递增,t=$\sqrt{2}$时,取得最小值$\frac{3\sqrt{2}}{2}$;
⑤y=$\frac{1}{2}$(x+$\frac{1}{x-2}$)(x>2)=$\frac{1}{2}$(x-2+$\frac{1}{x-2}$+2)≥$\frac{1}{2}$(2$\sqrt{(x-2)•\frac{1}{x-2}}$+2)=2,x=3时,取得最小值2.
故答案为:③⑤.
点评 本题考查函数最值的求法,考查基本不等式的运用,考查运算能力,属于中档题和易错题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x|x+2| | B. | f(x)=x|x-2| | C. | f(x)=-x|x+2| | D. | f(x)=-x|x-2| |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com