精英家教网 > 高中数学 > 题目详情
16.计算:
(1)log2$\sqrt{\frac{7}{48}}$+log212-$\frac{1}{2}$log242-1;
(2)(lg 2)2+lg 2•lg 50+lg 25.

分析 (1)根据对数的运算性质化简即可;
(2)根据对数的运算性质化简即可.

解答 解 (1)原式=log2$\frac{\sqrt{7}}{\sqrt{48}}$+log212-log2$\sqrt{42}$-1
=log2$\frac{\sqrt{7}×12}{\sqrt{48}×\sqrt{42}}$-1=log2$\frac{1}{\sqrt{2}}$-1
=-$\frac{1}{2}$-1=-$\frac{3}{2}$;
(2)原式=lg 2•(lg 2+lg 50)+lg 25
=21g 2+lg 25=lg 100=2.

点评 本题考查了对数的运算性质在化简、求值中的应用,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知集合S={x|log0.5(x+2)>log0.2549},P={x|a+1<x<2a+15}.
(1)求集合S;
(2)若S⊆P,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$y=cos(\frac{π}{3}-x)$的单调增区间是(  )
A.$[{\frac{π}{3}+2kπ,\frac{4π}{3}+2kπ}](k∈Z)$B.$[{-\frac{2π}{3}+2kπ,\frac{π}{3}+2kπ}](k∈Z)$
C.$[{-\frac{π}{8}+2kπ,\frac{3π}{8}+2kπ}](k∈Z)$D.$[{-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列几个命题:
①函数y=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$是偶函数,但不是奇函数;
②方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
③f(x)是定义在R上的奇函数,当x<0时,f(x)=2x2+x-1,则x≥0时,f(x)=-2x2+x+1
④函数y=$\frac{3-{2}^{x}}{{2}^{x}+2}$的值域是(-1,$\frac{3}{2}$).
其中正确命题的序号有②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知Sn是等差数列{an}的前n项和,若a5=5a3,则$\frac{{S}_{9}}{{S}_{5}}$=(  )
A.$\frac{18}{5}$B.5C.9D.$\frac{9}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和为Sn
(Ⅰ)求an
(Ⅱ)设bn=$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z满足(3-2i)•z=4+3i,则复平面内表示复数z的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知 a-a-1=2,则$\frac{{({a^3}+{a^{-3}})({a^2}+{a^{-2}}-2)}}{{{a^4}-{a^{-4}}}}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列函数:
①y=x+$\frac{1}{x}$;
②y=lgx+logx10(x>0,x≠1);
③y=sinx+$\frac{1}{sinx}$(0<x≤$\frac{π}{2}$);
④y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$;
⑤y=$\frac{1}{2}$(x+$\frac{1}{x-2}$)(x>2).
其中最小值为2的函数序号是③⑤.

查看答案和解析>>

同步练习册答案