精英家教网 > 高中数学 > 题目详情
8.复数z满足(3-2i)•z=4+3i,则复平面内表示复数z的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由(3-2i)•z=4+3i,得$z=\frac{4+3i}{3-2i}$,然后利用复数代数形式的乘除运算化简复数z,求出z在复平面内对应的点的坐标,则答案可求.

解答 解:由(3-2i)•z=4+3i,
得$z=\frac{4+3i}{3-2i}$$\frac{(4+3i)(3+2i)}{(3-2i)(3+2i)}=\frac{6+17i}{13}=\frac{6}{13}+\frac{17}{13}i$,
则z在复平面内对应的点的坐标为:($\frac{6}{13}$,$\frac{17}{13}$),位于第一象限.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列说法中正确的是(  )
A.如果两条直线l1与l2垂直,那么它们的斜率之积一定等于-1
B.“a>0,b>0”是“$\frac{b}{a}$+$\frac{a}{b}$≥2”的充分必要条件
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.“a≠-5或b≠5”是“a+b≠0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.(理)如图,在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,S到A、B、C、D的距离都等于2.给出以下结论:
①$\overrightarrow{SA}$+$\overrightarrow{SB}$+$\overrightarrow{SC}$+$\overrightarrow{SD}$=$\overrightarrow{0}$;
②$\overrightarrow{SA}$+$\overrightarrow{SB}$-$\overrightarrow{SC}$-$\overrightarrow{SD}$=$\overrightarrow{0}$;
③$\overrightarrow{SA}$-$\overrightarrow{SB}$+$\overrightarrow{SC}$-$\overrightarrow{SD}$=$\overrightarrow{0}$; 
④$\overrightarrow{SA}$•$\overrightarrow{SB}$=$\overrightarrow{SC}$•$\overrightarrow{SD}$;
⑤$\overrightarrow{SA}$•$\overrightarrow{SC}$=0,
其中正确结论是(  )
A.①②③B.④⑤C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
(1)log2$\sqrt{\frac{7}{48}}$+log212-$\frac{1}{2}$log242-1;
(2)(lg 2)2+lg 2•lg 50+lg 25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,若Sn=2an-3n.
(Ⅰ)求证:数列{an+3}是等比数列,并求出数列{an}的通项an
(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式$\frac{{({2-3x})({x-3})}}{{({{x^2}-x+2})({x-1})}}≥0$的解集是{x|x≤$\frac{2}{3}$或1<x≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正常数),且函数f(x)和g(x)的图象与y轴的交点重合.
(1)求a实数的值
(2)若h(x)=f(x)+b$\sqrt{g(x)}$(b为常数)试讨论函数h(x)的奇偶性;
(3)若关于x的不等式f(x)-2$\sqrt{g(x)}$>a有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}=3$,求$\frac{{{a^2}+{a^{-\;2}}+1}}{{a+{a^{-\;1}}-1}}$的值.
(2)计算$\sqrt{(1-\sqrt{2}{)^2}}+{2^{-2}}×{(\frac{9}{16})^{-0.5}}+{2^{{{log}_2}3}}-(lg8+lg125)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log4(2x+3-x2).
(1)求f(x)的定义域及单调区间;
(2)求f(x)的最大值,并求出取得最大值时x的值;
(3)设函数g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案