精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和为Sn,若Sn=2an-3n.
(Ⅰ)求证:数列{an+3}是等比数列,并求出数列{an}的通项an
(Ⅱ)求数列{nan}的前n项和Tn

分析 (I)Sn=2an-3n,n=1时,a1=2a1-3,解得a1.n≥2时,an=Sn-Sn-1,化为:an=2an-1+3,变形为:an+3=2(an-1+3),利用等比数列的通项公式即可得出.
(II)nan=3n×2n-3n.设数列{n×2n}的前n项和为An=2+2×22+3×23+…+n×2n,利用“错位相减法”与等比数列的求和公式即可得出An,再利用等差数列的求和公式进而得出.

解答 (I)证明:∵Sn=2an-3n,∴n=1时,a1=2a1-3,解得a1=3.
n≥2时,an=Sn-Sn-1=2an-3n-[2an-1-3(n-1)],
化为:an=2an-1+3,变形为:an+3=2(an-1+3),∴数列{an+3}是等比数列,公比为2.
∴an+3=6×2n-1,解得an=3×2n-3.
(II)解:nan=3n×2n-3n.
设数列{n×2n}的前n项和为An=2+2×22+3×23+…+n×2n
2An=22+2×23+…+(n-1)×2n+n×2n+1
∴-An=2+22+…+2n-n×2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n×2n+1=(1-n)×2n+1-2,
∴An=(n-1)×2n+1+2.
∴数列{nan}的前n项和Tn=6+(3n-3)×2n+1-3×$\frac{n(n+1)}{2}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、“错位相减法”方法、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,直线l的极坐标方程为:ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,曲线C的参数方程为:$\left\{\begin{array}{l}{x=2(sint+cost)}\\{y=4(1+sin2t)}\end{array}\right.(t为参数)$
(1)写出直线l和曲线C的普通方程;
(2)若直线l和曲线C相交于A,B两点,定点P(-1,2),求线段|AB|和|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某外商到一开防区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜投入50万美元.
(1)若扣除投资及各种经费,则从第几年开始获取纯利润?
(2)试计算第几年平均获取纯利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知Sn是等差数列{an}的前n项和,若a5=5a3,则$\frac{{S}_{9}}{{S}_{5}}$=(  )
A.$\frac{18}{5}$B.5C.9D.$\frac{9}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.判断下列函数的奇偶性.
(1)f(x)=(x+1)$\sqrt{\frac{1-x}{1+x}}$;
(2)f(x)=x($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z满足(3-2i)•z=4+3i,则复平面内表示复数z的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数y=x2+2(a-1)x+2在区间(-∞,4]上单调递减,则实数a的取值范围是a≤-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,(x>0)}\\{{2}^{x},(x≤0)}\end{array}\right.$,则f[f($\frac{1}{9}$)]的值是$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某市准备从7名报名者(其中男4人,女3人)中选3人参加副局长职务竞选.设所选3人中是女生的人数为X,则X的数学期望为$\frac{9}{7}$.

查看答案和解析>>

同步练习册答案