分析 先求函数的定义域,然后根据函数奇偶性的定义进行判断即可.
解答 解 (1)定义域要求$\frac{1-x}{1+x}$≥0且x≠-1,
∴-1<x≤1,∴f(x)定义域不关于原点对称,
∴f(x)是非奇非偶函数.
(2)函数定义域为(-∞,0)∪(0,+∞).
∵f(-x)=-x($\frac{1}{{2}^{-x}-1}$+$\frac{1}{2}$)
=-x($\frac{{2}^{x}}{1-{2}^{x}}$+$\frac{1}{2}$)=x($\frac{{2}^{x}}{{2}^{x}-1}-\frac{1}{2}$)=x($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$)=f(x).
∴f(x)是偶函数.
点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.注意要先判断函数的定义域是否关于原点对称.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 公差小于0 | B. | a7=0 | ||
| C. | S9>S8 | D. | S6,S7均为Sn的最大值 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com