精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,(x>0)}\\{{2}^{x},(x≤0)}\end{array}\right.$,则f[f($\frac{1}{9}$)]的值是$\frac{1}{9}$.

分析 由已知得f($\frac{1}{9}$)=$lo{g}_{2}\frac{1}{9}$,从而f[f($\frac{1}{9}$)]=f($lo{g}_{2}\frac{1}{9}$),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,(x>0)}\\{{2}^{x},(x≤0)}\end{array}\right.$,
∴f($\frac{1}{9}$)=$lo{g}_{2}\frac{1}{9}$,
f[f($\frac{1}{9}$)]=f($lo{g}_{2}\frac{1}{9}$)=${2}^{lo{g}_{2}\frac{1}{9}}$=$\frac{1}{9}$.
故答案为:$\frac{1}{9}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.用函数单调性的定义证明f(x)=x2+1在(0,+∞)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,若Sn=2an-3n.
(Ⅰ)求证:数列{an+3}是等比数列,并求出数列{an}的通项an
(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正常数),且函数f(x)和g(x)的图象与y轴的交点重合.
(1)求a实数的值
(2)若h(x)=f(x)+b$\sqrt{g(x)}$(b为常数)试讨论函数h(x)的奇偶性;
(3)若关于x的不等式f(x)-2$\sqrt{g(x)}$>a有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设集合 A={x|2<x<4},B={a<x<3a}.
(1)若A∩B≠∅,求实数a的范围.
(2)若A∪B={x|2<x<6},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}=3$,求$\frac{{{a^2}+{a^{-\;2}}+1}}{{a+{a^{-\;1}}-1}}$的值.
(2)计算$\sqrt{(1-\sqrt{2}{)^2}}+{2^{-2}}×{(\frac{9}{16})^{-0.5}}+{2^{{{log}_2}3}}-(lg8+lg125)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数y=f(x)的局部对称点.
(1)若a、b∈R且a≠0,证明:函数f(x)=ax2+bx-a必有局部对称点;
(2)若函数f(x)=2x+c在定义域[-1,2]内有局部对称点,求实数c的取值范围;
(3)若函数f(x)=4x-m•2x+1+m2-3在R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=3-$\sqrt{-{x^2}+6x-5}$的值域为[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l过点P(1,2),斜率k=2
(1)写出直线l的方程;   
(2)判断点A(1,-2)是否在直线l上?
(3)直线n过点B(2,9)且平行于直线l,求直线n的方程;
(4)求直线l与直线n的距离.

查看答案和解析>>

同步练习册答案