精英家教网 > 高中数学 > 题目详情
7.函数$y=cos(\frac{π}{3}-x)$的单调增区间是(  )
A.$[{\frac{π}{3}+2kπ,\frac{4π}{3}+2kπ}](k∈Z)$B.$[{-\frac{2π}{3}+2kπ,\frac{π}{3}+2kπ}](k∈Z)$
C.$[{-\frac{π}{8}+2kπ,\frac{3π}{8}+2kπ}](k∈Z)$D.$[{-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ}](k∈Z)$

分析 利用诱导公式化简函数y的解析式,再利用余弦函数的单调性求得函数y的单调增区间.

解答 解:∵函数y=cos($\frac{π}{3}$-x)=cos(x-$\frac{π}{3}$),
令2kπ-π≤x-$\frac{π}{3}$≤2kπ,k∈Z,
求得-$\frac{2π}{3}$+2kπ≤x≤$\frac{π}{3}$+2kπ,k∈Z,
所以函数y的单调增区间是[-$\frac{2π}{3}$+2kπ,$\frac{π}{3}$+2kπ],k∈Z.
故选:B.

点评 本题主要考查了诱导公式、余弦函数的单调性问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则∁IA∪∁IB=(  )
A.{0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法中正确的是(  )
A.如果两条直线l1与l2垂直,那么它们的斜率之积一定等于-1
B.“a>0,b>0”是“$\frac{b}{a}$+$\frac{a}{b}$≥2”的充分必要条件
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.“a≠-5或b≠5”是“a+b≠0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在同一坐标系中,函数y=($\frac{1}{2}$)x与y=log2x的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用函数单调性的定义证明f(x)=x2+1在(0,+∞)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如果数列{an}对于任意p,q∈N*,有ap+aq=ap+q,若a1=2,则an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.(理)如图,在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,S到A、B、C、D的距离都等于2.给出以下结论:
①$\overrightarrow{SA}$+$\overrightarrow{SB}$+$\overrightarrow{SC}$+$\overrightarrow{SD}$=$\overrightarrow{0}$;
②$\overrightarrow{SA}$+$\overrightarrow{SB}$-$\overrightarrow{SC}$-$\overrightarrow{SD}$=$\overrightarrow{0}$;
③$\overrightarrow{SA}$-$\overrightarrow{SB}$+$\overrightarrow{SC}$-$\overrightarrow{SD}$=$\overrightarrow{0}$; 
④$\overrightarrow{SA}$•$\overrightarrow{SB}$=$\overrightarrow{SC}$•$\overrightarrow{SD}$;
⑤$\overrightarrow{SA}$•$\overrightarrow{SC}$=0,
其中正确结论是(  )
A.①②③B.④⑤C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
(1)log2$\sqrt{\frac{7}{48}}$+log212-$\frac{1}{2}$log242-1;
(2)(lg 2)2+lg 2•lg 50+lg 25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}=3$,求$\frac{{{a^2}+{a^{-\;2}}+1}}{{a+{a^{-\;1}}-1}}$的值.
(2)计算$\sqrt{(1-\sqrt{2}{)^2}}+{2^{-2}}×{(\frac{9}{16})^{-0.5}}+{2^{{{log}_2}3}}-(lg8+lg125)$.

查看答案和解析>>

同步练习册答案