精英家教网 > 高中数学 > 题目详情
15.在同一坐标系中,函数y=($\frac{1}{2}$)x与y=log2x的图象大致是(  )
A.B.C.D.

分析 根据指数函数和对数函数的图象和性质即可判断.

解答 解:函数y=($\frac{1}{2}$)x为减函数,且过定点(0,1),
y=log2x为增函数,且过定点(1,0),
故选:A

点评 本题考查了指数函数和对数函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知方程$\frac{{x}^{2}}{k-5}$-$\frac{{y}^{2}}{|k|-2}$=1表示双曲线,那么k的取值范围是(  )
A.k>5B.-2<k<2C.k>2或k<-2D.k>5或-2<k<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合S={x|log0.5(x+2)>log0.2549},P={x|a+1<x<2a+15}.
(1)求集合S;
(2)若S⊆P,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定点A(-1,1),动点P在抛物线C:y2=-8x上,F为抛物线C的焦点.
(1)求|PA|+|PF|最小值;
(2)求以A为中点的弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x+x2
(1)求证:f(x)是周期函数;
(2)当x∈[2,4],求f(x)的解析式;
(3)计算:f(0)+f(1)+f(2)+…+f(2008).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.集合{x,y,z}的子集个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$y=cos(\frac{π}{3}-x)$的单调增区间是(  )
A.$[{\frac{π}{3}+2kπ,\frac{4π}{3}+2kπ}](k∈Z)$B.$[{-\frac{2π}{3}+2kπ,\frac{π}{3}+2kπ}](k∈Z)$
C.$[{-\frac{π}{8}+2kπ,\frac{3π}{8}+2kπ}](k∈Z)$D.$[{-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列几个命题:
①函数y=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$是偶函数,但不是奇函数;
②方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
③f(x)是定义在R上的奇函数,当x<0时,f(x)=2x2+x-1,则x≥0时,f(x)=-2x2+x+1
④函数y=$\frac{3-{2}^{x}}{{2}^{x}+2}$的值域是(-1,$\frac{3}{2}$).
其中正确命题的序号有②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知 a-a-1=2,则$\frac{{({a^3}+{a^{-3}})({a^2}+{a^{-2}}-2)}}{{{a^4}-{a^{-4}}}}$=$\frac{5}{3}$.

查看答案和解析>>

同步练习册答案