精英家教网 > 高中数学 > 题目详情
14.P在曲线$y={x^3}+x+\frac{2}{3}$上移动,在点P处的切线的斜率为k,则k的取值范围是k≥1.

分析 利用导数的几何意义求出切线的斜率,再由二次函数的值域求法即可得到.

解答 解:设切点P(x0,y0),在此点的切线的斜率为k.
∵$y={x^3}+x+\frac{2}{3}$,∴f′(x)=3x2+1,
∴f′(x0)=3x02+1,(x0∈R).
∴斜率k=3x02+1≥1,
故答案为:k≥1.

点评 本题考查了导数的几何意义,二次函数的值域;熟练掌握导数的几何意义和正确求导是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.下列几个命题:
①函数y=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$是偶函数,但不是奇函数;
②方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
③f(x)是定义在R上的奇函数,当x<0时,f(x)=2x2+x-1,则x≥0时,f(x)=-2x2+x+1
④函数y=$\frac{3-{2}^{x}}{{2}^{x}+2}$的值域是(-1,$\frac{3}{2}$).
其中正确命题的序号有②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知 a-a-1=2,则$\frac{{({a^3}+{a^{-3}})({a^2}+{a^{-2}}-2)}}{{{a^4}-{a^{-4}}}}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)求函数y=2x+4$\sqrt{2-x}$,x∈[0,2]的值域;
(2)化简:$\frac{\sqrt{1-2sin40°cos40°}}{cos40°-\sqrt{1-co{s}^{2}40°}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知F为抛物线y2=x的焦点,点P为抛物线上的动点,P到抛物线准线的距离为d.
(1)若$A(\frac{5}{4},\frac{3}{4})$,求PF+PA域最小值;
(2)若$B(\frac{1}{4},2)$,求PB+d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=x3-6x+5,x∈R.
(1)求f(x)的单调区间和极值;
(2)求曲线f(x)过点(1,0)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列函数:
①y=x+$\frac{1}{x}$;
②y=lgx+logx10(x>0,x≠1);
③y=sinx+$\frac{1}{sinx}$(0<x≤$\frac{π}{2}$);
④y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$;
⑤y=$\frac{1}{2}$(x+$\frac{1}{x-2}$)(x>2).
其中最小值为2的函数序号是③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知全集U=R,函数y=$\sqrt{x-2}$+$\sqrt{x+1}$的定义域为集合A,函数y=-x2+2x+2的值域为集合B.
(1)求集合A∩B,A∪B.
(2)求集合(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)满足f(x+2)=f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是(  )
A.$(0,\;\;\frac{1}{4}]$B.$(0,\;\;\frac{1}{2}]$C.(0,1)D.(0,2)

查看答案和解析>>

同步练习册答案