精英家教网 > 高中数学 > 题目详情
4.设l是一条直线,α,β,γ是不同的平面,则在下列命题中,真命题的个数是(  )个.
①如果α⊥β,那么α内一定存在直线平行于β
②如果α不垂直于β,那么α内一定不存在直线垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
A.0B.1C.2D.3

分析 在①中,由面面垂直的性质得α内一定存在直线平行于β;在②中,由面面垂直的判定得α内一定不存在直线垂直于β;在③中,由线面垂直的判定定理得l⊥γ.

解答 解:由l是一条直线,α,β,γ是不同的平面,知:
在①中,如果α⊥β,那么由面面垂直的性质得α内一定存在直线平行于β,故①正确;
在②中,如果α不垂直于β,那么由面面垂直的判定得α内一定不存在直线垂直于β,故②正确;
在③中,如果α⊥γ,β⊥γ,α∩β=l,那么由线面垂直的判定定理得l⊥γ,故③正确.
故选:D.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{{\begin{array}{l}{3-{x^2}(x>0)}\\{2(x=0)}\\{1-2x(x<0)}\end{array}}$,
(1)画出函数f(x)图象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)当f(x)≥2时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)═ax-$\frac{a}{x}$-51nx,g(x)=x2-mx+4
(1)若x=2是函数f(x)的极值点,求a的值;
(2)当a=2时,若?x1∈(0,1),?x2∈[1,2]都有f(x1)≥g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,给出下列两个命题:命题p:?m∈(-∞,0),方程f(x)=0有解.命题q:若m=$\frac{1}{9}$,则f(f(-1))=0那么,下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,A,B,C的对边分别是a,b,c,2sin2C+5sin2A=7sinA•sinC,且c<2a.
(1)求证:△ABC为等腰三角形;
(2)若△ABC的面积为2$\sqrt{15}$,且sinB=$\frac{\sqrt{15}}{4}$,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(n)=2+24+27+210+…+23n+13(n∈N*),则f(n)等于$\frac{2}{7}$(8n+5-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将函数f(x)=sinωx的图象向右平移$\frac{π}{4}$个单位长度,所得图象与g(x)=cosωx的图象重合,则正数ω的最小值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在正三棱锥S-ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2$\sqrt{2}$,则正三棱锥S-ABC的外接球的体积为(  )
A.$\sqrt{6}π$B.$4\sqrt{3}π$C.$4\sqrt{2}π$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ax5+bx3-x+2(a,b为常数),且f(-2)=5,则f(2)=(  )
A.-1B.-5C.1D.5

查看答案和解析>>

同步练习册答案