精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{{\begin{array}{l}{3-{x^2}(x>0)}\\{2(x=0)}\\{1-2x(x<0)}\end{array}}$,
(1)画出函数f(x)图象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)当f(x)≥2时,求x的取值范围.

分析 (1)根据分段函数的画法,画出图象即可;
(2)根据分段函数的解析式代入即可;
(3)结合图象写出x的取值范围.

解答 解:(1)图象如图:
(2)f(a2+1)=3-(a2+1)2=-a4-2a2+2,f(f(3))=f(-6)=13
(3)由图象知,当f(x)≥2时,$x≤-\frac{1}{2}或x=0或0<x≤1$
故x的取值的范围为$\{x|x≤-\frac{1}{2}或x=0或0<x≤1\}$

点评 本题主要考查函数的图象、解析式以及图象的应用,属于中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若α为锐角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,则cosα=$\frac{3\sqrt{3}+4}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若平面向量$\overrightarrow b$与向量$\overrightarrow a=(2,-1)$的夹角是180°,且$|\overrightarrow b|=3\sqrt{5}$,则$\overrightarrow b$=(  )
A.(-3,6)B.(3,-6)C.(-6,3)D.(6,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a,b,c分别是角A,B,C所对的边长,$a=2\sqrt{3}$,C=30°,$sinBsinC={cos^2}\frac{A}{2}$.则b=(  )
A.$\sqrt{3}$B.2C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为$\frac{5\sqrt{5}π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线C与双曲线$\frac{{x}^{2}}{3}$-y2=1有公共焦点,且过点(2,$\sqrt{2}$).求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则:
(1)这3人的值班顺序共有多少种不同的排列方法?
(2)这3人的值班顺序中,甲在乙之前的排法有多少种?
(3)甲排在乙之前的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}为等比数列,且a1=-1,a4=64.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设l是一条直线,α,β,γ是不同的平面,则在下列命题中,真命题的个数是(  )个.
①如果α⊥β,那么α内一定存在直线平行于β
②如果α不垂直于β,那么α内一定不存在直线垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案