| A. | $\sqrt{3}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | $2\sqrt{3}$ |
分析 由已知利用倍角公式,可求sinB=1+cosA,结合已知利用三角函数恒等变换的应用化简可得sin(B+60°)=1,进而可求B,A的值,利用正弦定理即可计算得解.
解答 解:∴sinBsinC=$\frac{1}{2}$sinB=cos2$\frac{A}{2}$=$\frac{1+cosA}{2}$,可得:sinB=1+cosA,
∵C=30°,
∴sinB=1+cos(150°-B),化为sin(B+60°)=1,
∴解得B=30°,A=120°,
∴b=$\frac{asinB}{sinA}$=$\frac{2\sqrt{3}×\frac{1}{2}}{\frac{\sqrt{3}}{2}}$=2.
故选:B.
点评 本题考查了倍角公式,三角函数恒等变换,正弦定理在解三角形中的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{7}{3}$ | C. | $\frac{8}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9π | B. | 324π | C. | 81π | D. | $\frac{243}{2}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 12 | C. | $2\sqrt{2}$ | D. | $8\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com