| A. | 2 | B. | $\frac{7}{3}$ | C. | $\frac{8}{3}$ | D. | 3 |
分析 利用椭圆方程求出a,c,△PF1F2的内切圆半径为1,利用三角形的面积公式,化简求解即可.
解答 解:|PF1|+|PF2|=10,|F1F2|=6,
点P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上一点,F1,F2是椭圆的两个焦点,且△PF1F2的内切圆半径为1,
${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}$(|PF1|+|PF2|+|F1F2|)×1=8=$\frac{1}{2}$|F1F2|•yP,
yP=$\frac{8}{3}$.
故选:C.
点评 本题考查圆锥曲线与圆的故选的综合应用,椭圆的简单性质的应用,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,4) | B. | (-∞,3)∪(4,+∞) | C. | (4,+∞) | D. | (-∞,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1-\sqrt{2}}{2}$ | B. | $\frac{1+\sqrt{2}}{2}$ | C. | $\frac{1-\sqrt{3}}{2}$ | D. | $\frac{1+\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com