精英家教网 > 高中数学 > 题目详情
7.直角三角形ABC中,$∠C={90°},BC=2,\overrightarrow{AD}=t\overrightarrow{AB}$,其中1≤t≤3,则$\overrightarrow{BC}•\overrightarrow{DC}$的最大值是(  )
A.3B.12C.$2\sqrt{2}$D.$8\sqrt{2}$

分析 利用两个向量的加减法的法则,以及其几何意义,求得$\overrightarrow{BC}•\overrightarrow{DC}$=t${\overrightarrow{CB}}^{2}$+(t-1)•$\overrightarrow{CA}•\overrightarrow{CB}$,根据两个向量垂直的性质以及t的范围,求得它的最大值.

解答 解:直角三角形ABC中,$∠C={90°},BC=2,\overrightarrow{AD}=t\overrightarrow{AB}$,其中1≤t≤3,
则$\overrightarrow{BC}•\overrightarrow{DC}$=-$\overrightarrow{CB}$•[-($\overrightarrow{AD}$-$\overrightarrow{AC}$)]=$\overrightarrow{CB}$•($\overrightarrow{AD}-\overrightarrow{AC}$)=$\overrightarrow{CB}$•(t$\overrightarrow{AB}$+$\overrightarrow{CA}$)=$\overrightarrow{CB}$•[t$\overrightarrow{CB}$-$\overrightarrow{CA}$)+$\overrightarrow{CA}$]=$\overrightarrow{CB}$•[t$\overrightarrow{CB}$+(t-1)•$\overrightarrow{CA}$]
=t${\overrightarrow{CB}}^{2}$+(t-1)•$\overrightarrow{CA}•\overrightarrow{CB}$=t•4+0=4t≤12,
故当t=3时,$\overrightarrow{BC}•\overrightarrow{DC}$取得最大值是12,
故选:B.

点评 本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,两个向量的数量积的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=3$\sqrt{t}$,Q=t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).求:
(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;
(2)怎样将资金分配给甲、乙两种商品,能使得总利润y达到最大值,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等腰梯形ABCD中,已知AB∥DC,∠ABC=60°,BC=$\frac{1}{2}$AB=2,动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{2λ}$$\overrightarrow{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{BF}$的最小值为4$\sqrt{6}$-13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知下列曲线的方程,求它的焦点坐标,离心率.
(1)9x2-y2=81
(2)16x2+9y2=144.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a,b,c分别是角A,B,C所对的边长,$a=2\sqrt{3}$,C=30°,$sinBsinC={cos^2}\frac{A}{2}$.则b=(  )
A.$\sqrt{3}$B.2C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一条直线被两坐标轴截得线段AB,若点(a,b)恰为线段AB的中点,则这条直线的一般式方程为bx+ay-2ab=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线C与双曲线$\frac{{x}^{2}}{3}$-y2=1有公共焦点,且过点(2,$\sqrt{2}$).求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)=2|x|-1,记a=f(log0.53),b=f(log25),c=f(0),则a,b,c 的大小关系为(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.当曲线y=$\sqrt{4-{x}^{2}}$与直线kx-y-2k+4=0有两个相异的交点时,实数k的取值范围是(  )
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞]

查看答案和解析>>

同步练习册答案