精英家教网 > 高中数学 > 题目详情
12.一条直线被两坐标轴截得线段AB,若点(a,b)恰为线段AB的中点,则这条直线的一般式方程为bx+ay-2ab=0.

分析 利用中点坐标公式、截距式即可得出.

解答 解:由题意可得:A(2a,0),B(0,2b).
a,b≠0时,直线的截距式为:$\frac{x}{2a}$+$\frac{y}{2b}$=1,化为:bx+ay-2ab=0,
故答案为:bx+ay-2ab=0.

点评 本题考查了中点坐标公式、截距式、一般式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知sin(x+$\frac{π}{4}$)=$\frac{1}{4}$,则sin2x的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{8}$D.-$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图的程序框图,输出的结果S的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.0C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“x≠-1,则x2+5x-6=0”的必要不充分条件
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.若命题p:?x0∈R,x02-x0+1<0,则¬p:?x0∉R,x02-x0+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直角三角形ABC中,$∠C={90°},BC=2,\overrightarrow{AD}=t\overrightarrow{AB}$,其中1≤t≤3,则$\overrightarrow{BC}•\overrightarrow{DC}$的最大值是(  )
A.3B.12C.$2\sqrt{2}$D.$8\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}满足a1=2,an≠1,(an+1-an)g(an)+f(an)=0.
(1)求证:an+1=$\frac{3}{4}$an+$\frac{1}{4}$;
(2)求数列{an-1}的通项公式;
(3)若bn=3f(an)-g(an+1),求{bn}中的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四组函数,表示同一函数的是(  )
A.f (x)=$\sqrt{{x}^{2}}$,g(x)=xB.f (x)=x,g(x)=$\frac{{x}^{2}}{x}$
C.f (x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$\sqrt{x-2}$D.f (x)=x,g(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且a:b:c=2:3:4,则△ABC中最大角的余弦值是$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的虚轴长为2$\sqrt{2}$,点M(2,1)在C上,平行于OM的直线l交椭圆C于不同的两点A,B.
(1)求椭圆C的方程;
(2)证明:直线MA,MB与x轴总围成等腰三角形.

查看答案和解析>>

同步练习册答案