精英家教网 > 高中数学 > 题目详情
2.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的虚轴长为2$\sqrt{2}$,点M(2,1)在C上,平行于OM的直线l交椭圆C于不同的两点A,B.
(1)求椭圆C的方程;
(2)证明:直线MA,MB与x轴总围成等腰三角形.

分析 (1)把b=$\sqrt{2}$代入椭圆方程,再把点M(2,1)代入求得a值,则椭圆方程可求;
(2)设出平行于OM的直线l的方程,联立直线方程和椭圆方程,求出直线MA,MB的斜率,结合根与系数的关系证得直线MA,MB的斜率和为0得答案.

解答 (1)解:依题意$2b=2\sqrt{2}$,∴b=$\sqrt{2}$,
∴椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{2}=1$,
将M(2,1)代入,得$\frac{4}{{a}^{2}}+\frac{1}{2}=1$,解得a2=8,
∴椭圆C的方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$.
(2)证明:设直线MA,MB的斜率分别为k1,k2
A(x1,y1),B(x2,y2),l:y=$\frac{1}{2}x$+m(m≠0),
则${k}_{1}=\frac{{y}_{1}-1}{{x}_{1}-2}$,${k}_{2}=\frac{{y}_{2}-1}{{x}_{2}-2}$,
∴k1+k2=$\frac{{y}_{1}-1}{{x}_{1}-2}+\frac{{y}_{2}-1}{{x}_{2}-2}$=$\frac{({y}_{1}-1)({x}_{2}-2)+({y}_{2}-1)({x}_{1}-2)}{({x}_{1}-2)({x}_{2}-2)}$
=$\frac{(\frac{1}{2}{x}_{1}+m-1)({x}_{2}-2)+(\frac{1}{2}{x}_{2}+m-1)({x}_{1}-2)}{({x}_{1}-2)({x}_{2}-2)}$
=$\frac{{x}_{1}{x}_{2}+(m-2)({x}_{1}+{x}_{2})-4(m-1)}{({x}_{1}-2)({x}_{2}-2)}$,(*)
由$\left\{\begin{array}{l}{y=\frac{1}{2}x+m}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得x2+2mx+2m2-4=0,
∴x1+x2=-2m,${x}_{1}{x}_{2}=2{m}^{2}-4$,
代入(*)式,得
k1+k2=$\frac{2{m}^{2}-4+(m-2)(-2m)-4(m-1)}{({x}_{1}-2)({x}_{2}-2)}$=$\frac{2{m}^{2}-4-2{m}^{2}+4m-4m+4}{({x}_{1}-2)({x}_{2}-2)}$=0.
∴直线MA,MB与x轴总围成等腰三角形.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.一条直线被两坐标轴截得线段AB,若点(a,b)恰为线段AB的中点,则这条直线的一般式方程为bx+ay-2ab=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在复平面内,复数$\frac{2-i}{1+i}$(是虚数单位)的共轭复数对应的点位于(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a=$\frac{1}{2}$,b=log32,c=2${\;}^{\frac{1}{3}}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.当曲线y=$\sqrt{4-{x}^{2}}$与直线kx-y-2k+4=0有两个相异的交点时,实数k的取值范围是(  )
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={a1,a2,a3,…an},(0≤a1<a2<a3<…<an,n∈N*,n≥3)具有性质P:对任意的i,j(1≤i≤j≤n),aj+ai,ai-ai至少有一个属于A.
(1)分别判断集合M={0,2,4}与N={1,2,3}是否具有性质P
(2)求证:
①a1=0
②a1+a2+a3+…+an=$\frac{n}{2}$an
(3)当n=3或4时集合A中的数列{an}是否一定成等差数列?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=x2-2ax+3在[2,+∞)上为增函数,则实数a的取值范围是(  )
A.[2,+∞)B.(-∞,2]C.[4,+∞)D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分. 假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.
(1)求这名同学回答这三个问题的总得分X的分布列和数学期望E(X);
(2)求这名同学总得分(不为负分即X≥0)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={m,1},B={m2,-1},且A=B,则实数m的值为(  )
A.1B.-1C.0D.±1

查看答案和解析>>

同步练习册答案