| A. | (0,$\frac{3}{4}$) | B. | ($\frac{5}{12}$,$\frac{3}{4}$] | C. | ($\frac{3}{4}$,1] | D. | ($\frac{3}{4}$,+∞] |
分析 直线方程变形,判断出直线过定点;求出特殊位置k的值,即可求出满足题意的k的范围.
解答 解:曲线y=$\sqrt{4-{x}^{2}}$即x2+y2=4,(y≥0)
表示一个以(0,0)为圆心,以2为半径的位于x轴上方的半圆,如图所示:
直线kx-y-2k+4=0即y=k(x-2)+4,表示恒过点A(2,4)斜率为k的直线
B(2-,0)时,kAB=1,
∵$\frac{|-2k+4|}{\sqrt{1+{k}^{2}}}$=2解得k=$\frac{3}{4}$
∴要使直线与半圆有两个不同的交点,k的取值范围是($\frac{3}{4}$,1].
故选C.
点评 解决直线与二次曲线的交点问题,常先化简曲线的方程,一定要注意做到同解变形,数形结合解决参数的范围问题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 12 | C. | $2\sqrt{2}$ | D. | $8\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>0或m<-4 | B. | -4<m<0 | C. | -4<m≤0 | D. | 0<m<4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一定是锐角三角形 | B. | 一定是直角三角形 | ||
| C. | 一定是钝角三角形 | D. | 是锐角或直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com