精英家教网 > 高中数学 > 题目详情
6.对于一组向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$(n∈N*),令$\overrightarrow{{S}_{n}}$=$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$,如果存在$\overrightarrow{{a}_{p}}$(p∈{1,2,3,…,n},使得|$\overrightarrow{{a}_{p}}$|≥|$\overrightarrow{{S}_{n}}$-$\overrightarrow{{a}_{p}}$|,那么称$\overrightarrow{{a}_{p}}$是该向量组的“h向量”.
(1)设$\overrightarrow{{a}_{n}}$=(n,x+n)(n∈N*),若$\overrightarrow{{a}_{3}}$是向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,求实数x的取值范围;
(2)若$\overrightarrow{{a}_{n}}$=(($\frac{1}{3}$)n-1•(-1)n(n∈N*),向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$是否存在“h向量”?给出你的结论并说明理由;
(3)已知$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$均是向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,其中$\overrightarrow{{a}_{1}}$=(sinx,cosx),$\overrightarrow{{a}_{2}}$=(2cosx,2sinx).设在平面直角坐标系中有一点列Q1.Q2,Q3,…,Qn满足:Q1为坐标原点,Q2为$\overrightarrow{{a}_{3}}$的位置向量的终点,且Q2k+1与Q2k关于点Q1对称,Q2k+2与Q2k+1(k∈N*)关于点Q2对称,求|$\overrightarrow{{Q}_{2013}{Q}_{2014}}$|的最小值.

分析 (1)由“h向量”的定义可知:丨$\overrightarrow{{a}_{3}}$丨>丨$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{3}}$丨,可得$\sqrt{9+(x+3)^{2}}$≥$\sqrt{9+(2x+3)^{2}}$,即可求得实数x的取值范围;
(2)由$\overrightarrow{{a}_{1}}$=(1,-1),丨$\overrightarrow{{a}_{1}}$丨=$\sqrt{2}$,当n为奇数时,$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$=($\frac{\frac{1}{3}[1-(\frac{1}{3})^{n-1}]}{1-\frac{1}{3}}$,0)=($\frac{1}{2}$-$\frac{1}{2}$($\frac{1}{3}$)n-1,0),丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨=$\sqrt{[\frac{1}{2}-\frac{1}{2}(\frac{1}{3})^{n-1}]^{2}+{0}^{2}}$<$\frac{1}{2}$<$\sqrt{2}$,同理当n为偶数时,$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$=($\frac{1}{2}$-$\frac{1}{2}$•($\frac{1}{3}$)n-1,1),即可求得丨$\overrightarrow{{a}_{1}}$丨>丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨,$\overrightarrow{{a}_{1}}$因此是向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$的“h向量”;
(3)由题意可得:丨$\overrightarrow{{a}_{1}}$丨2>丨$\overrightarrow{{a}_{2}}$丨2+丨$\overrightarrow{{a}_{3}}$丨2+2丨$\overrightarrow{{a}_{2}}$丨•丨$\overrightarrow{{a}_{3}}$丨,丨$\overrightarrow{{a}_{2}}$丨2>丨$\overrightarrow{{a}_{1}}$丨2+丨$\overrightarrow{{a}_{3}}$丨2+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{3}}$丨,丨$\overrightarrow{{a}_{3}}$丨2>丨$\overrightarrow{{a}_{1}}$丨2+丨$\overrightarrow{{a}_{2}}$丨2+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{2}}$丨,
以上各式相加,整理可得:丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨=0,设$\overrightarrow{{a}_{3}}$=(u,v),由丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨=0,得:$\left\{\begin{array}{l}{u=-sinx-2cosx}\\{v=-cosx-2sinx}\end{array}\right.$,根据向量相等可知:(x2k+2,y2k+2)=2k[(x2,y2)-(x1,y1)]+(x2,y2),(x2k+1,y2k+1)=-2k[(x2,y2)-(x1,y1)]+(x2,y2),可知:Q2k+1•Q2k+2=(x2k+2-x2k+1,y2k+2-y2k+1)=4k[(x2,y2)-(x1,y1)]=4kQ1•Q2,由向量的模长公式即可求得丨Q1•Q2丨最小值,即可求得|$\overrightarrow{{Q}_{2013}{Q}_{2014}}$|的最小值.

解答 解:(1)由题意,得:丨$\overrightarrow{{a}_{3}}$丨>丨$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{3}}$丨,则$\sqrt{9+(x+3)^{2}}$≥$\sqrt{9+(2x+3)^{2}}$…..2’
解得:-2≤x≤0; …..4’
(2)$\overrightarrow{{a}_{1}}$是向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$的“h向量”,证明如下:
$\overrightarrow{{a}_{1}}$=(1,-1),丨$\overrightarrow{{a}_{1}}$丨=$\sqrt{2}$,

当n为奇数时,$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$=($\frac{\frac{1}{3}[1-(\frac{1}{3})^{n-1}]}{1-\frac{1}{3}}$,0)=($\frac{1}{2}$-$\frac{1}{2}$($\frac{1}{3}$)n-1,0),…..6’
∵0≤$\frac{1}{2}$-$\frac{1}{2}$($\frac{1}{3}$)n-1<$\frac{1}{2}$,故丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨=$\sqrt{[\frac{1}{2}-\frac{1}{2}(\frac{1}{3})^{n-1}]^{2}+{0}^{2}}$<$\frac{1}{2}$<$\sqrt{2}$,…8’
即丨$\overrightarrow{{a}_{1}}$丨>丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨
当n为偶数时,$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$=($\frac{1}{2}$-$\frac{1}{2}$•($\frac{1}{3}$)n-1,1),
故丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨=$\sqrt{[\frac{1}{2}-\frac{1}{2}•(\frac{1}{3})^{n-1}]^{2}+{1}^{2}}$<$\sqrt{\frac{5}{4}}$<$\sqrt{2}$,
即丨$\overrightarrow{{a}_{1}}$丨>丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨
综合得:$\overrightarrow{{a}_{1}}$是向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$的“h向量”,证明如下:”…..10’
(3)由题意,得丨$\overrightarrow{{a}_{1}}$丨>丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$丨,丨$\overrightarrow{{a}_{1}}$丨2>丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$丨2,即(丨$\overrightarrow{{a}_{1}}$丨)2≥(丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$丨)2
即丨$\overrightarrow{{a}_{1}}$丨2>丨$\overrightarrow{{a}_{2}}$丨2+丨$\overrightarrow{{a}_{3}}$丨2+2丨$\overrightarrow{{a}_{2}}$丨•丨$\overrightarrow{{a}_{3}}$丨,
同理丨$\overrightarrow{{a}_{2}}$丨2>丨$\overrightarrow{{a}_{1}}$丨2+丨$\overrightarrow{{a}_{3}}$丨2+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{3}}$丨,丨$\overrightarrow{{a}_{3}}$丨2>丨$\overrightarrow{{a}_{1}}$丨2+丨$\overrightarrow{{a}_{2}}$丨2+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{2}}$丨,
三式相加并化简,得:0≥丨$\overrightarrow{{a}_{1}}$丨2+丨$\overrightarrow{{a}_{2}}$丨2+丨$\overrightarrow{{a}_{3}}$丨2+2丨$\overrightarrow{{a}_{2}}$丨•丨$\overrightarrow{{a}_{3}}$丨+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{3}}$丨+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{2}}$丨,
即(丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨)2≤0,丨丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨丨≤0,
∴丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨=0,…..13’
设$\overrightarrow{{a}_{3}}$=(u,v),由丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨=0,得:$\left\{\begin{array}{l}{u=-sinx-2cosx}\\{v=-cosx-2sinx}\end{array}\right.$,
设Qn(xn,yn),则依题意得:$\left\{\begin{array}{l}{({x}_{2k+1},{y}_{2k+1})=2({x}_{1},{y}_{1})-({x}_{2k},{y}_{2k})}\\{{(x}_{2k+2},{y}_{2k+2})=2({x}_{2},{y}_{2})-({x}_{2k+1},{y}_{2k+1})}\end{array}\right.$,
得(x2k+2,y2k+2)=2k[(x2,y2)-(x1,y1)]+(x2k,y2k),
故(x2k+2,y2k+2)=2k[(x2,y2)-(x1,y1)]+(x2,y2),
(x2k+1,y2k+1)=-2k[(x2,y2)-(x1,y1)]+(x2,y2),
∴Q2k+1•Q2k+2=(x2k+2-x2k+1,y2k+2-y2k+1)=4k[(x2,y2)-(x1,y1)]=4kQ1•Q2,…16’
丨Q1•Q22=丨$\overrightarrow{{a}_{3}}$丨2=(-sinx-2cosx)2+(-cosx-2sinx)2=5+8sinxcosx=5+4sin2x≥1,
当且仅当x=kπ-$\frac{π}{4}$,(k∈Z)时等号成立,
故|$\overrightarrow{{Q}_{2013}{Q}_{2014}}$|的最小值4024.

点评 本题考查向量的新定义的应用,考查等比数列前n项和的应用,向量的加法及模长公式,考查正弦函数的最值,考查分析问题及解决问题的能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)=2|x|-1,记a=f(log0.53),b=f(log25),c=f(0),则a,b,c 的大小关系为(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.当曲线y=$\sqrt{4-{x}^{2}}$与直线kx-y-2k+4=0有两个相异的交点时,实数k的取值范围是(  )
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=x2-2ax+3在[2,+∞)上为增函数,则实数a的取值范围是(  )
A.[2,+∞)B.(-∞,2]C.[4,+∞)D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,b=3,c=3$\sqrt{3}$,B=30°,则a=(  )
A.6B.3C.6或3D.6或4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分. 假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.
(1)求这名同学回答这三个问题的总得分X的分布列和数学期望E(X);
(2)求这名同学总得分(不为负分即X≥0)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.△ABC中,A=60°,B=45°,a=10,则b的值(  )
A.5$\sqrt{2}$B.10$\sqrt{2}$C.$\frac{10\sqrt{6}}{3}$D.5$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0},则∁UA等于(  )
A.{1,2}B.{1,4}C.{2,4}D.{1,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)($\frac{9}{4}$)${\;}^{\frac{1}{2}}}$-(-2009)0-($\frac{8}{27}$)${\;}^{\frac{2}{3}}}$+($\frac{3}{2}$)-2
(2)log25625+lg 0.001+ln$\sqrt{e}$+${2^{-1+{{log}_2}3}}$.

查看答案和解析>>

同步练习册答案