分析 (1)由“h向量”的定义可知:丨$\overrightarrow{{a}_{3}}$丨>丨$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{3}}$丨,可得$\sqrt{9+(x+3)^{2}}$≥$\sqrt{9+(2x+3)^{2}}$,即可求得实数x的取值范围;
(2)由$\overrightarrow{{a}_{1}}$=(1,-1),丨$\overrightarrow{{a}_{1}}$丨=$\sqrt{2}$,当n为奇数时,$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$=($\frac{\frac{1}{3}[1-(\frac{1}{3})^{n-1}]}{1-\frac{1}{3}}$,0)=($\frac{1}{2}$-$\frac{1}{2}$($\frac{1}{3}$)n-1,0),丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨=$\sqrt{[\frac{1}{2}-\frac{1}{2}(\frac{1}{3})^{n-1}]^{2}+{0}^{2}}$<$\frac{1}{2}$<$\sqrt{2}$,同理当n为偶数时,$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$=($\frac{1}{2}$-$\frac{1}{2}$•($\frac{1}{3}$)n-1,1),即可求得丨$\overrightarrow{{a}_{1}}$丨>丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨,$\overrightarrow{{a}_{1}}$因此是向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$的“h向量”;
(3)由题意可得:丨$\overrightarrow{{a}_{1}}$丨2>丨$\overrightarrow{{a}_{2}}$丨2+丨$\overrightarrow{{a}_{3}}$丨2+2丨$\overrightarrow{{a}_{2}}$丨•丨$\overrightarrow{{a}_{3}}$丨,丨$\overrightarrow{{a}_{2}}$丨2>丨$\overrightarrow{{a}_{1}}$丨2+丨$\overrightarrow{{a}_{3}}$丨2+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{3}}$丨,丨$\overrightarrow{{a}_{3}}$丨2>丨$\overrightarrow{{a}_{1}}$丨2+丨$\overrightarrow{{a}_{2}}$丨2+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{2}}$丨,
以上各式相加,整理可得:丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨=0,设$\overrightarrow{{a}_{3}}$=(u,v),由丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨=0,得:$\left\{\begin{array}{l}{u=-sinx-2cosx}\\{v=-cosx-2sinx}\end{array}\right.$,根据向量相等可知:(x2k+2,y2k+2)=2k[(x2,y2)-(x1,y1)]+(x2,y2),(x2k+1,y2k+1)=-2k[(x2,y2)-(x1,y1)]+(x2,y2),可知:Q2k+1•Q2k+2=(x2k+2-x2k+1,y2k+2-y2k+1)=4k[(x2,y2)-(x1,y1)]=4kQ1•Q2,由向量的模长公式即可求得丨Q1•Q2丨最小值,即可求得|$\overrightarrow{{Q}_{2013}{Q}_{2014}}$|的最小值.
解答 解:(1)由题意,得:丨$\overrightarrow{{a}_{3}}$丨>丨$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{3}}$丨,则$\sqrt{9+(x+3)^{2}}$≥$\sqrt{9+(2x+3)^{2}}$…..2’
解得:-2≤x≤0; …..4’
(2)$\overrightarrow{{a}_{1}}$是向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$的“h向量”,证明如下:
$\overrightarrow{{a}_{1}}$=(1,-1),丨$\overrightarrow{{a}_{1}}$丨=$\sqrt{2}$,
当n为奇数时,$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$=($\frac{\frac{1}{3}[1-(\frac{1}{3})^{n-1}]}{1-\frac{1}{3}}$,0)=($\frac{1}{2}$-$\frac{1}{2}$($\frac{1}{3}$)n-1,0),…..6’
∵0≤$\frac{1}{2}$-$\frac{1}{2}$($\frac{1}{3}$)n-1<$\frac{1}{2}$,故丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨=$\sqrt{[\frac{1}{2}-\frac{1}{2}(\frac{1}{3})^{n-1}]^{2}+{0}^{2}}$<$\frac{1}{2}$<$\sqrt{2}$,…8’
即丨$\overrightarrow{{a}_{1}}$丨>丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨
当n为偶数时,$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$=($\frac{1}{2}$-$\frac{1}{2}$•($\frac{1}{3}$)n-1,1),
故丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨=$\sqrt{[\frac{1}{2}-\frac{1}{2}•(\frac{1}{3})^{n-1}]^{2}+{1}^{2}}$<$\sqrt{\frac{5}{4}}$<$\sqrt{2}$,
即丨$\overrightarrow{{a}_{1}}$丨>丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$丨
综合得:$\overrightarrow{{a}_{1}}$是向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$的“h向量”,证明如下:”…..10’
(3)由题意,得丨$\overrightarrow{{a}_{1}}$丨>丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$丨,丨$\overrightarrow{{a}_{1}}$丨2>丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$丨2,即(丨$\overrightarrow{{a}_{1}}$丨)2≥(丨$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$丨)2,
即丨$\overrightarrow{{a}_{1}}$丨2>丨$\overrightarrow{{a}_{2}}$丨2+丨$\overrightarrow{{a}_{3}}$丨2+2丨$\overrightarrow{{a}_{2}}$丨•丨$\overrightarrow{{a}_{3}}$丨,
同理丨$\overrightarrow{{a}_{2}}$丨2>丨$\overrightarrow{{a}_{1}}$丨2+丨$\overrightarrow{{a}_{3}}$丨2+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{3}}$丨,丨$\overrightarrow{{a}_{3}}$丨2>丨$\overrightarrow{{a}_{1}}$丨2+丨$\overrightarrow{{a}_{2}}$丨2+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{2}}$丨,
三式相加并化简,得:0≥丨$\overrightarrow{{a}_{1}}$丨2+丨$\overrightarrow{{a}_{2}}$丨2+丨$\overrightarrow{{a}_{3}}$丨2+2丨$\overrightarrow{{a}_{2}}$丨•丨$\overrightarrow{{a}_{3}}$丨+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{3}}$丨+2丨$\overrightarrow{{a}_{1}}$丨•丨$\overrightarrow{{a}_{2}}$丨,
即(丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨)2≤0,丨丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨丨≤0,
∴丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨=0,…..13’
设$\overrightarrow{{a}_{3}}$=(u,v),由丨$\overrightarrow{{a}_{1}}$丨+丨$\overrightarrow{{a}_{2}}$丨+丨$\overrightarrow{{a}_{3}}$丨=0,得:$\left\{\begin{array}{l}{u=-sinx-2cosx}\\{v=-cosx-2sinx}\end{array}\right.$,
设Qn(xn,yn),则依题意得:$\left\{\begin{array}{l}{({x}_{2k+1},{y}_{2k+1})=2({x}_{1},{y}_{1})-({x}_{2k},{y}_{2k})}\\{{(x}_{2k+2},{y}_{2k+2})=2({x}_{2},{y}_{2})-({x}_{2k+1},{y}_{2k+1})}\end{array}\right.$,
得(x2k+2,y2k+2)=2k[(x2,y2)-(x1,y1)]+(x2k,y2k),
故(x2k+2,y2k+2)=2k[(x2,y2)-(x1,y1)]+(x2,y2),
(x2k+1,y2k+1)=-2k[(x2,y2)-(x1,y1)]+(x2,y2),
∴Q2k+1•Q2k+2=(x2k+2-x2k+1,y2k+2-y2k+1)=4k[(x2,y2)-(x1,y1)]=4kQ1•Q2,…16’
丨Q1•Q2丨2=丨$\overrightarrow{{a}_{3}}$丨2=(-sinx-2cosx)2+(-cosx-2sinx)2=5+8sinxcosx=5+4sin2x≥1,
当且仅当x=kπ-$\frac{π}{4}$,(k∈Z)时等号成立,
故|$\overrightarrow{{Q}_{2013}{Q}_{2014}}$|的最小值4024.
点评 本题考查向量的新定义的应用,考查等比数列前n项和的应用,向量的加法及模长公式,考查正弦函数的最值,考查分析问题及解决问题的能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{3}{4}$) | B. | ($\frac{5}{12}$,$\frac{3}{4}$] | C. | ($\frac{3}{4}$,1] | D. | ($\frac{3}{4}$,+∞] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | (-∞,2] | C. | [4,+∞) | D. | (-∞,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5$\sqrt{2}$ | B. | 10$\sqrt{2}$ | C. | $\frac{10\sqrt{6}}{3}$ | D. | 5$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {1,4} | C. | {2,4} | D. | {1,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com