精英家教网 > 高中数学 > 题目详情
14.若函数f(x)=x2-2ax+3在[2,+∞)上为增函数,则实数a的取值范围是(  )
A.[2,+∞)B.(-∞,2]C.[4,+∞)D.(-∞,4]

分析 先求出函数的对称轴,结合二次函数的性质得到不等式,解出即可.

解答 解:∵f(x)=x2-2ax+3在区间[2,+∞)上为增函数,
∴对称轴x=a≤2,
∴实数a的取值范围:(-∞,2].
故选:C.

点评 本题考查了二次函数的性质,单调性问题,本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列四组函数,表示同一函数的是(  )
A.f (x)=$\sqrt{{x}^{2}}$,g(x)=xB.f (x)=x,g(x)=$\frac{{x}^{2}}{x}$
C.f (x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$\sqrt{x-2}$D.f (x)=x,g(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$<0,则△ABC(  )
A.一定是锐角三角形B.一定是直角三角形
C.一定是钝角三角形D.是锐角或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的虚轴长为2$\sqrt{2}$,点M(2,1)在C上,平行于OM的直线l交椭圆C于不同的两点A,B.
(1)求椭圆C的方程;
(2)证明:直线MA,MB与x轴总围成等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(n)=2+24+27+210+…+23n+13(n∈N*),则f(n)等于$\frac{2}{7}$(8n+5-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|x-1|-2|x+a|.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若不等式f(x)>0,在x∈[2,3]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于一组向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$(n∈N*),令$\overrightarrow{{S}_{n}}$=$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$,如果存在$\overrightarrow{{a}_{p}}$(p∈{1,2,3,…,n},使得|$\overrightarrow{{a}_{p}}$|≥|$\overrightarrow{{S}_{n}}$-$\overrightarrow{{a}_{p}}$|,那么称$\overrightarrow{{a}_{p}}$是该向量组的“h向量”.
(1)设$\overrightarrow{{a}_{n}}$=(n,x+n)(n∈N*),若$\overrightarrow{{a}_{3}}$是向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,求实数x的取值范围;
(2)若$\overrightarrow{{a}_{n}}$=(($\frac{1}{3}$)n-1•(-1)n(n∈N*),向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$是否存在“h向量”?给出你的结论并说明理由;
(3)已知$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$均是向量组$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,其中$\overrightarrow{{a}_{1}}$=(sinx,cosx),$\overrightarrow{{a}_{2}}$=(2cosx,2sinx).设在平面直角坐标系中有一点列Q1.Q2,Q3,…,Qn满足:Q1为坐标原点,Q2为$\overrightarrow{{a}_{3}}$的位置向量的终点,且Q2k+1与Q2k关于点Q1对称,Q2k+2与Q2k+1(k∈N*)关于点Q2对称,求|$\overrightarrow{{Q}_{2013}{Q}_{2014}}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,如果输入的a=1,b=1,那么输出的值等于(  )
A.21B.34C.55D.89

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{an}中,a1=1,an+1=$\frac{{2{a_n}}}{{{a_n}+2}}$,则数列{an}的通项公式an=$\frac{2}{n+1}$.

查看答案和解析>>

同步练习册答案