精英家教网 > 高中数学 > 题目详情
15.已知下列曲线的方程,求它的焦点坐标,离心率.
(1)9x2-y2=81
(2)16x2+9y2=144.

分析 将曲线方程化为标准方程,确定几何量,即可求它的焦点坐标,离心率.

解答 解:(1)9x2-y2=81可化为$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{81}$=1,
∴a=3,b=9,c=3$\sqrt{10}$,
焦点坐标($±3\sqrt{10}$,0),离心率e=$\frac{c}{a}$=$\sqrt{10}$.
(2)16x2+9y2=144可化为$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1,
∴a=4,b=3,c=$\sqrt{7}$,
焦点坐标(0,$±\sqrt{7}$),离心率e=$\frac{c}{a}$=$\frac{\sqrt{7}}{4}$.

点评 本题考查双曲线、椭圆的焦点坐标,离心率,考查学生的计算能力,确定几何量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{5}{4}$,其两条渐近线方程是y=±$\frac{3}{4}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)化简$\frac{{sin(π-α)sin(\frac{π}{2}-α)}}{{cos(π+α)cos(\frac{π}{2}+α)}}$
(2)若tanα=2,求$\frac{4sinα-2cosα}{5cosα+3sinα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图的程序框图,输出的结果S的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.0C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.写出下列集合的所有子集:
(1){1};   
(2){1,2};     
(3){1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“x≠-1,则x2+5x-6=0”的必要不充分条件
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.若命题p:?x0∈R,x02-x0+1<0,则¬p:?x0∉R,x02-x0+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直角三角形ABC中,$∠C={90°},BC=2,\overrightarrow{AD}=t\overrightarrow{AB}$,其中1≤t≤3,则$\overrightarrow{BC}•\overrightarrow{DC}$的最大值是(  )
A.3B.12C.$2\sqrt{2}$D.$8\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四组函数,表示同一函数的是(  )
A.f (x)=$\sqrt{{x}^{2}}$,g(x)=xB.f (x)=x,g(x)=$\frac{{x}^{2}}{x}$
C.f (x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$\sqrt{x-2}$D.f (x)=x,g(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$<0,则△ABC(  )
A.一定是锐角三角形B.一定是直角三角形
C.一定是钝角三角形D.是锐角或直角三角形

查看答案和解析>>

同步练习册答案