分析 将曲线方程化为标准方程,确定几何量,即可求它的焦点坐标,离心率.
解答 解:(1)9x2-y2=81可化为$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{81}$=1,
∴a=3,b=9,c=3$\sqrt{10}$,
焦点坐标($±3\sqrt{10}$,0),离心率e=$\frac{c}{a}$=$\sqrt{10}$.
(2)16x2+9y2=144可化为$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1,
∴a=4,b=3,c=$\sqrt{7}$,
焦点坐标(0,$±\sqrt{7}$),离心率e=$\frac{c}{a}$=$\frac{\sqrt{7}}{4}$.
点评 本题考查双曲线、椭圆的焦点坐标,离心率,考查学生的计算能力,确定几何量是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | 0 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1” | |
| B. | “x≠-1,则x2+5x-6=0”的必要不充分条件 | |
| C. | 命题“若x=y,则sinx=siny”的逆否命题为真命题 | |
| D. | 若命题p:?x0∈R,x02-x0+1<0,则¬p:?x0∉R,x02-x0+1≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 12 | C. | $2\sqrt{2}$ | D. | $8\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f (x)=$\sqrt{{x}^{2}}$,g(x)=x | B. | f (x)=x,g(x)=$\frac{{x}^{2}}{x}$ | ||
| C. | f (x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$\sqrt{x-2}$ | D. | f (x)=x,g(x)=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一定是锐角三角形 | B. | 一定是直角三角形 | ||
| C. | 一定是钝角三角形 | D. | 是锐角或直角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com