精英家教网 > 高中数学 > 题目详情
13.正方体ABCD-A1B1C1D1的棱长为6,O1为正方形A1B1C1D1的中心,则四棱锥O1-ABCD的外接球的表面积为(  )
A.B.324πC.81πD.$\frac{243}{2}π$

分析 设球的半径为R,则由勾股定理可得R2=(3$\sqrt{2}$)2+(R-6)2,可得R,即可求出四棱锥O1-ABCD的外接球的表面积.

解答 解:设球的半径为R,则由勾股定理可得R2=(3$\sqrt{2}$)2+(R-6)2,∴R=$\frac{9}{2}$,
∴四棱锥O1-ABCD的外接球的表面积为4πR2=81π,
故选:C.

点评 本题考查四棱锥O1-ABCD的外接球的表面积,考查学生的计算能力,正确求出球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如果方程$\frac{{x}^{2}}{4-m}$+$\frac{{y}^{2}}{m-3}$=1表示双曲线,则m的取值范围是(  )
A.(3,4)B.(-∞,3)∪(4,+∞)C.(4,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若α为锐角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,则cosα=$\frac{3\sqrt{3}+4}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=cos(ωx+φ)的部分图象如图,则f(-$\frac{π}{6}$)+f(-$\frac{π}{12}$)+f(0)=(  )
A.$\frac{1-\sqrt{2}}{2}$B.$\frac{1+\sqrt{2}}{2}$C.$\frac{1-\sqrt{3}}{2}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,AB是圆O切于点B,过A的直线交圆O于C、D两点,已知AB=6,CD=5
(1)求$\frac{BC}{BD}$的值;
(2)若∠BAC=60°,求圆O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等腰梯形ABCD中,已知AB∥DC,∠ABC=60°,BC=$\frac{1}{2}$AB=2,动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{2λ}$$\overrightarrow{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{BF}$的最小值为4$\sqrt{6}$-13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若平面向量$\overrightarrow b$与向量$\overrightarrow a=(2,-1)$的夹角是180°,且$|\overrightarrow b|=3\sqrt{5}$,则$\overrightarrow b$=(  )
A.(-3,6)B.(3,-6)C.(-6,3)D.(6,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a,b,c分别是角A,B,C所对的边长,$a=2\sqrt{3}$,C=30°,$sinBsinC={cos^2}\frac{A}{2}$.则b=(  )
A.$\sqrt{3}$B.2C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}为等比数列,且a1=-1,a4=64.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案