精英家教网 > 高中数学 > 题目详情
5.若平面向量$\overrightarrow b$与向量$\overrightarrow a=(2,-1)$的夹角是180°,且$|\overrightarrow b|=3\sqrt{5}$,则$\overrightarrow b$=(  )
A.(-3,6)B.(3,-6)C.(-6,3)D.(6,-3)

分析 根据题意设出$\overrightarrow{b}$=(-2x,x),x>0,利用模长公式列出方程求出x的值.

解答 解:由平面向量$\overrightarrow b$与向量$\overrightarrow a=(2,-1)$的夹角是180°,
设$\overrightarrow{b}$=(-2x,x),x>0;
由$|\overrightarrow b|=3\sqrt{5}$,
得(-2x)2+x2=${(3\sqrt{5})}^{2}$,
解得x=3;
所以$\overrightarrow b$=(-6,3).
故选:C.

点评 本题考查了利用平面向量的模长公式与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列命题中,是真命题的是(  )
A.?x0∈R,使得e${\;}^{{x}_{0}}$≤0B.$sinx+\frac{2}{sinx}≥2\sqrt{2}(x≠kπ,k∈Z)$
C.?x∈R,2x>x2D.a>1,b>1是ab>1的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=loga(2x-3)+1(a>0,且a≠1)的图象恒过定点P,则点P的坐标是(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正方体ABCD-A1B1C1D1的棱长为6,O1为正方形A1B1C1D1的中心,则四棱锥O1-ABCD的外接球的表面积为(  )
A.B.324πC.81πD.$\frac{243}{2}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,E、F分别是矩形ABCD的边BC、CD的中点,|$\overrightarrow{AB}$|=4,|$\overrightarrow{BC}$|=3,则向量$\overrightarrow{AE}$-$\overrightarrow{AF}$的模长等于(  )
 
A.2.5B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.写出下列集合的所有子集:
(1){1};   
(2){1,2};     
(3){1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=-xlnx+ax在(0,e)上是增函数,函数$g(x)=|{{e^x}-a}|+\frac{a^2}{2}$,当x∈[0,ln3]时,函数g(x)的最大值M与最小值m的差为$\frac{3}{2}$,则a=(  )
A.$\frac{5}{2}$B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{{\begin{array}{l}{3-{x^2}(x>0)}\\{2(x=0)}\\{1-2x(x<0)}\end{array}}$,
(1)画出函数f(x)图象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)当f(x)≥2时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)═ax-$\frac{a}{x}$-51nx,g(x)=x2-mx+4
(1)若x=2是函数f(x)的极值点,求a的值;
(2)当a=2时,若?x1∈(0,1),?x2∈[1,2]都有f(x1)≥g(x2)成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案