精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=-xlnx+ax在(0,e)上是增函数,函数$g(x)=|{{e^x}-a}|+\frac{a^2}{2}$,当x∈[0,ln3]时,函数g(x)的最大值M与最小值m的差为$\frac{3}{2}$,则a=(  )
A.$\frac{5}{2}$B.2C.$\frac{3}{2}$D.1

分析 根据函数f(x)=-xlnx+ax在(0,e)上是增函数,可得f'(x)=-lnx+a-1≥0在(0,e)恒成立,从而f'(x)=-lnx+a+1的最小值大于等于0即可,进而可得参数的范围;利用$g(x)=|{{e^x}-a}|+\frac{a^2}{2}$,当x∈[0,ln3]时,函数g(x)的最大值M与最小值m的差为$\frac{3}{2}$,可求参数的值,从而可得结论.

解答 解:因为函数f(x)=-xlnx+ax在(0,e)上是增函数,
所以f'(x)=a-1-lnx≥0在(0,e)上恒成立,即a-2≥0,即a≥2;
因为$g(x)=|{{e^x}-1}|+\frac{a^2}{2}=\left\{{\begin{array}{l}{a-{e^x}+\frac{a^2}{2},0≤x≤lna}\\{{e^x}-1+\frac{a^2}{2},x≥lna}\end{array}}\right.$,
若lna≥ln3,即a≥3时,g(x)在[0,ln3]单调递减,则M-m=g(0)-g(ln3)=2(舍),
当lna<ln3,即2≤a<3时,函数g(x)在[0,lna]上递减,在[lna,ln3]上递增,且g(0)-g(ln3)=2a-4≥0,所以$M-m=g(0)-g(lna)=\frac{3}{2}$,
即$(a-1+\frac{a^2}{2})-\frac{a^2}{2}=a-1=\frac{3}{2}$,
解得$a=\frac{5}{2}$.
故选:A.

点评 本题主要考查利用导数研究函数的单调性,考查函数最值的确定,其中确定函数g(x)的最大值M与最小值m是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.点P在以F为焦点的抛物线y2=4x上运动,点Q在直线x-y+5=0上运动,则||PF+|PQ|的最小值为(  )
A.4B.2$\sqrt{3}$C.3$\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,AB是圆O切于点B,过A的直线交圆O于C、D两点,已知AB=6,CD=5
(1)求$\frac{BC}{BD}$的值;
(2)若∠BAC=60°,求圆O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若平面向量$\overrightarrow b$与向量$\overrightarrow a=(2,-1)$的夹角是180°,且$|\overrightarrow b|=3\sqrt{5}$,则$\overrightarrow b$=(  )
A.(-3,6)B.(3,-6)C.(-6,3)D.(6,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列函数的定义域:
(1)f(x)=$\sqrt{x+1}$+$\frac{1}{x-1}$;       
(2)g(x)=log2(3-4x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a,b,c分别是角A,B,C所对的边长,$a=2\sqrt{3}$,C=30°,$sinBsinC={cos^2}\frac{A}{2}$.则b=(  )
A.$\sqrt{3}$B.2C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为$\frac{5\sqrt{5}π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则:
(1)这3人的值班顺序共有多少种不同的排列方法?
(2)这3人的值班顺序中,甲在乙之前的排法有多少种?
(3)甲排在乙之前的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a,b∈R,若p:2a<2b,q:a2<b2,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案