精英家教网 > 高中数学 > 题目详情
2.下列命题中,是真命题的是(  )
A.?x0∈R,使得e${\;}^{{x}_{0}}$≤0B.$sinx+\frac{2}{sinx}≥2\sqrt{2}(x≠kπ,k∈Z)$
C.?x∈R,2x>x2D.a>1,b>1是ab>1的充分不必要条件

分析 根据指数函数性质即可判断A错误;通过举反例可判断选项B、C均错误;若a>1,b>1,则ab>1显然成立,反之不成立,故选项D正确.

解答 解:对于选项A:根据指数函数性质,?x∈R,ex>0,故A错误;
对于选项B:当x=$-\frac{π}{2}$时,$sinx+\frac{2}{sinx}$=-3,故B错误;
对于选项C:当x=-1时,${2}^{x}=\frac{1}{2},{x}^{2}=1$,此时2x<x2,故C错误;
对于选项D:若a>1,b>1,则ab>1显然成立;反之不成立,例如a=4,b=$\frac{1}{2}$.所以a>1,b>1是ab>1的充分不必要条件,故D正确.
故选:D

点评 本题通过判断命题的真假考查了基本初等函数的性质,三角函数以及不等式等知识点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=1-$\frac{a}{{3}^{x}+1}$是奇函数.
(1)求a的值;
(2)证明f(x)是R上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.问题“求方程5x+12x=13x的解”有如下的思路:方程5x+12x=13x可变为(${\frac{5}{13}}$)x+(${\frac{12}{13}}$)x=1,考察函数f(x)=(${\frac{5}{13}}$)x+(${\frac{12}{13}}$)x可知f(2)=1,且函数f(x)在R上单调递减,所以原方程有唯一解x=2.仿照此解法可得到不等式:lgx-4>2lg2-x的解集为(4,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果方程$\frac{{x}^{2}}{4-m}$+$\frac{{y}^{2}}{m-3}$=1表示双曲线,则m的取值范围是(  )
A.(3,4)B.(-∞,3)∪(4,+∞)C.(4,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的两个焦点坐标分别是F1(-$\sqrt{3}$,0)、F2($\sqrt{3}$,0),并且经过点P($\sqrt{3}$,-$\frac{1}{2}$).
(1)求椭圆C的方程;
(2)若直线l与圆O:x2+y2=1相切,并与椭圆C交于不同的两点A、B.当$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ,且满足$\frac{1}{2}$≤λ≤$\frac{2}{3}$时,求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,三角形VAB为等边三角形,AC⊥BC且     AC=BC=$\sqrt{2}$,O、M分别为AB和VA的中点.
(1)求证:VB∥平面MOC;
(2)求直线MC与平面VAB所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.点P在以F为焦点的抛物线y2=4x上运动,点Q在直线x-y+5=0上运动,则||PF+|PQ|的最小值为(  )
A.4B.2$\sqrt{3}$C.3$\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若α为锐角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,则cosα=$\frac{3\sqrt{3}+4}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若平面向量$\overrightarrow b$与向量$\overrightarrow a=(2,-1)$的夹角是180°,且$|\overrightarrow b|=3\sqrt{5}$,则$\overrightarrow b$=(  )
A.(-3,6)B.(3,-6)C.(-6,3)D.(6,-3)

查看答案和解析>>

同步练习册答案