分析 (I)设等比数列{an}的公比为q,由a2=2,a2•a5=32,可得a5=16=${a}_{2}{q}^{3}$=2q3,解得q,利用等比数列的通项公式可得an.设等差数列{bn}的公差为d,利用等差数列的通项公式及其前n项和公式即可得出bn.
(II)an+bn=(2n-1)+2n-1.利用等差数列与等比数列的前n项和公式即可得出.
解答 解:(I)设等比数列{an}的公比为q,∵a2=2,a2•a5=32,
∴a5=16=${a}_{2}{q}^{3}$=2q3,解得q=2,
∴an=2×2n-2=2n-1.
设等差数列{bn}的公差为d,∵b1=1,S5=25.∴5+$\frac{5×4}{2}$d=25,解得d=2.
∴bn=1+2(n-1)=2n-1.
(II)an+bn=(2n-1)+2n-1.
∴数列{an+bn}的前n项和Tn=$\frac{n(1+2n-1)}{2}$+$\frac{{2}^{n}-1}{2-1}$=n2+2n-1.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{3}$ | B. | $\frac{-1-\sqrt{17}}{8}$ | C. | -3 | D. | $\frac{-1±\sqrt{17}}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com