精英家教网 > 高中数学 > 题目详情
化简:cos2(-α)+sin(-α)•cos(2π+α)•tan(-α).
考点:同角三角函数基本关系的运用,运用诱导公式化简求值
专题:三角函数的求值
分析:原式利用诱导公式化简后,再利用同角三角函数间基本关系变形,计算即可得到结果.
解答: 解:原式=cos2α+sinα•cosα•tanα=cos2α+sinα•cosα•
sinα
cosα
=cos2α+sin2α=1.
点评:此题考查了同角三角函数基本关系的运用,以及运用诱导公式化简求值,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了检测某种新研制出的禽流感疫苗对家禽的免疫效果,某研究中心随机抽取了50只鸡作为样本,进行家禽免疫效果试验,得到如下缺少部分数据的2×2列联表.已知用分层抽样的方法,从对禽流感病毒没有免疫力的20只鸡中抽取8只,恰好抽到2只注射了该疫苗的鸡.
(Ⅰ)从抽取到的这8只鸡随机抽取3只进行解剖研究,求至少抽到1只注射了该疫苗的鸡的概率;
(Ⅱ)完成下面2×2列联表,并帮助该研究和纵向判断:在犯错误的概率不超过0.5%的前提下,能否认为这种新研制出的禽流感疫苗对家禽具有免疫效果?
有免疫力没有免疫力  总计
 有注射疫苗  20
 没有注射疫苗
    总计   20   50

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点,AC与平面BCC1B1所成角为45°.
(1)求证:C1F∥平面ABE;
(2)求三棱锥B-AFC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2|x-a|(a∈R且a≤
7
3

(Ⅰ)当a=2时,求函数f(x)的单调递减区间;
(Ⅱ)若函数f(x)在区间[1,2]上的最小值是1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4
2
x的焦点为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,且椭圆的长轴长为4,左右顶点分别为A,B,经过椭圆左焦点的直线l与椭圆交于C、D两点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)记△ABD与△ABC的面积分别为S1和S2,且|S1-S2|=2,求直线l方程;
(Ⅲ)若M(x1,y1)N(x2,y2)是椭圆上的两动点,且满x1x2+2y1y2=0,动点P满足
OP
=
OM
+2
ON
(其中O为坐标原点),是否存在两定点F1,F2使得|PF1|+|PF2|为定值,若存在求出该定值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(x+4)=f(x),当2≤x≤6时,f(x)=(
1
2
|x-m|+n,且f(8)=31.
(1)求m,n的值;
(2)比较f(log22m)与f(log2n)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
x-1
x+1

(Ⅰ)设函数F(x)=f(x)g(x),求F(x)的单调区间;
(Ⅱ)若不等式f(x)+mg(x)<0对于任意x∈(0,1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(x-
1
x
4的二项展开式中x2的系数是
 
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=10+loga(x+
x2+1
)且f(1)=2,则f(-1)=
 

查看答案和解析>>

同步练习册答案