精英家教网 > 高中数学 > 题目详情
19.设x,y∈R+,且x+y=1,求$\frac{1}{x}$+$\frac{2}{y}$的最小值,并指出此时x,y的取值.

分析 整体代入可得$\frac{1}{x}$+$\frac{2}{y}$=($\frac{1}{x}$+$\frac{2}{y}$)(x+y)=3+$\frac{y}{x}$+$\frac{2x}{y}$,由基本不等式可得.

解答 解:∵x,y∈R+,且x+y=1,
∴$\frac{1}{x}$+$\frac{2}{y}$=($\frac{1}{x}$+$\frac{2}{y}$)(x+y)
=3+$\frac{y}{x}$+$\frac{2x}{y}$≥3+2$\sqrt{\frac{y}{x}•\frac{2x}{y}}$=3+2$\sqrt{2}$
当且仅当$\frac{y}{x}$=$\frac{2x}{y}$时取等号,
结合x+y=1可得x=$\sqrt{2}$-1且y=2-$\sqrt{2}$

点评 本题考查基本不等式求最值,“1”的代换是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$为R上的奇函数,解不等式:f-1(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{{a}^{x}+{a}^{-x}}{2}$(a>0,a≠1,a为常数,x∈R).
(1)若f(m)=8,求f(-m)的值;
(2)若f(1)=3,求f(2)及f($\frac{1}{2}$).
[注:函数y=ax(a>0,a≠1)叫做指数函数,则y=ax>0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=2x-2-x的单调递增区间是(-∞,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=($\frac{3}{1+|x|}$,-1),$\overrightarrow{b}$=(1,-$\frac{3}{1+|x-2|}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,则下列命题正确的个数为(  )个.
①f(x)的图象关于直线x=1对称;
②f(x)的值域为(0,4];
③曲线f(x)在x=0,x=2处的切线方程均为y=4;
④f(x)的极值点的个数为3;
⑤方程f[f(x)]=$\frac{10}{3}$的实数解的个数为6.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=x2+2bx-1
(1)若图象经过点(3,2),求此时函数解析式和图象的对称轴,顶点坐标;
(2)若函数在区间(-1,3)上单调,求b的范围;
(3)比较f(3)与f(5)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.画出下列函数的图象,并指出它们的单调区间:
(1)y=|x|-1;
(2)y=|x-1|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow{m}$,$\overrightarrow{n}$满足|$\overrightarrow{m}$|=2,|$\overrightarrow{n}$|=3,|$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{17}$,则|$\overrightarrow{m}$+$\overrightarrow{n}$|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列判断正确的是 (  )
A.1.92.5>1.93B.0.3-2.5>0.3-2.1C.($\frac{1}{3}$)-2<3${\;}^{\frac{1}{2}}$D.50.5<1

查看答案和解析>>

同步练习册答案