精英家教网 > 高中数学 > 题目详情
2.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(x)=f($\frac{x+1}{2x+4}$)的所有x之和为(  )
A.-$\frac{3}{2}$B.-$\frac{5}{2}$C.-4D.4

分析 若f(x)=f($\frac{x+1}{2x+4}$),则x=$\frac{x+1}{2x+4}$或-x=$\frac{x+1}{2x+4}$,利用韦达定理,可得答案.

解答 解:∵f(x)是连续的偶函数,且当x>0时是单调函数,
若f(x)=f($\frac{x+1}{2x+4}$),则
x=$\frac{x+1}{2x+4}$或-x=$\frac{x+1}{2x+4}$,
即2x2+3x-1=0或2x2+5x+1=0,
故${x}_{1}+{x}_{2}=-\frac{3}{2}$,${x}_{3}+{x}_{4}=-\frac{5}{2}$,
则满足f(x)=f($\frac{x+1}{2x+4}$)的所有x之和为-4,
故选:C.

点评 本题考查的知识点是函数的单调性,函数的奇偶性,抽象函数的应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在棱长为1的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的点),且满足|PB|+|PD1|=2,则点P的个数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x,-4≤x≤0}\\{-{2}^{x},0<x≤a}\end{array}\right.$的值域是[-8,1],则实数a的取值范围是(0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知P为双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1右支上的一点,F1,F2是该双曲线的左、右焦点,I为△PF1F2的内心,若S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$+λS${\;}_{△I{F}_{1}{F}_{2}}$成立,则λ的值为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{2\sqrt{7}}{7}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD=3丈,长AB=4丈,上棱EF=2丈,EF∥平面ABCD.EF与平面ABCD的距离为1丈,问它的体积是(  )
A.4立方丈B.5立方丈C.6立方丈D.8立方丈

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知关于x的二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,0,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域$\left\{\begin{array}{l}{x+y-8≤0}\\{x>0}\\{y>0}\end{array}\right.$内的一点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.与函数y=x表示同一个函数是(  )
A.y=$\sqrt{{x}^{2}}$B.y=a${\;}^{lo{g}_{a}x}$C.y=$\frac{{x}^{2}}{x}$D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的$\frac{1}{2}$,再将所得的图象向右平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,求函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过椭圆C上异于顶点的任一点P作圆O:x2+y2=b2的两条切线,切点分别为A,B,若直线AB与x,y轴分别交于M,N两点,则$\frac{{b}^{2}}{|OM{|}^{2}}$+$\frac{{a}^{2}}{|ON{|}^{2}}$的值为(  )
A.1B.$\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案