精英家教网 > 高中数学 > 题目详情
,则f[f()]=(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=asin2x+bcos2x,a,b∈R,ab≠0若f(x)≤|f(
π
6
)|对一切x∈R恒成立,则
①f(
11π
12
)=0.
②|f(
10
)|<|f(
π
5
)|.
③f(x)既不是奇函数也不是偶函数.
④f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z).
⑤存在经过点(a,b)的直线于函数f(x)的图象不相交.
以上结论正确的是
 
写出正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若f(x)≤f(
π
6
)|对一切x∈R恒成立,则
①f(
11π
12
)=0;
②|f(
12
)|<|f(
π
5
)|;
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z);
⑤经过点(a,b)的所有直线均与函数f(x)的图象相交.
以上结论正确的是
①③⑤
①③⑤
(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足g(x)≤f(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=Inx,g(x)=1-
1
x

(I)证明:直线y=x-l是f(x)与g(x)的“左同旁切线”;
(Ⅱ)设P(x1,f(x1)),Q(x2,f(x2))是函数 f(x)图象上任意两点,且0<x1<x2,若存在实数x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.请结合(I)中的结论证明x1<x3<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=mx-1,(其中m>1),设a>b>c>1,则
f(a)
a
f(b)
b
f(c)
c
的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

同步练习册答案