精英家教网 > 高中数学 > 题目详情

【题目】汽车智能辅助驾驶已得到广泛应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并结合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车,某种算法(如下图所示)将报警时间划分为4段,分别为准备时间、人的反应时间、系统反应时间、制动时间,相应的距离分别为,当车速为(米/秒),且时,通过大数据统计分析得到下表(其中系数随地面湿滑成都等路面情况而变化,.

阶段

0、准备

1、人的反应

2、系统反应

3、制动

时间

距离

1)请写出报警距离(米)与车速(米/秒)之间的函数关系式,并求时,若汽车达到报警距离时人和系统均不采取任何制动措施,仍以此速度行驶,则汽车撞上固定障碍物的最短时间(精确到0.1秒);

2)若要求汽车不论在何种路面情况下行驶,报警距离均小于80米,则汽车的行驶速度应限制在多少米/秒以下?合多少千米/小时?

【答案】(1),最短时间秒(2)汽车的行驶速度应限制在/秒,合72千米/小时

【解析】

1)根据题意,得到,结合题中数据,即可得出函数关系式;再由,得到汽车撞上固定障碍物的最短时间,根据基本不等式,即可求出最值;

2)根据题意,得到当时,报警距离最大,推出,求解即可得出结果.

1)由题意:报警距离

时,

则汽车撞上固定障碍物的最短时间为:秒;

2)由题意可得:,因为

所以当时,报警距离最大,

因此,只需:,解得:,所以汽车的行驶速度应限制在/秒,合72千米/小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论的单调性;

)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,判断的奇偶性,并说明理由;

2)若,求上的最小值;

3)若,且有三个不同实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,点中点,且,现将三角形沿折起,使点到达点的位置,且与平面所成的角为.

(1)求证:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

1)当时,证明:

2)若函数上存在两个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间及极值;

(2)时,存在,使方程成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,,点的中点.

1)求证:平面

2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

同步练习册答案