精英家教网 > 高中数学 > 题目详情
16.设矩形ABCD,以A、B为左右焦点,并且过C、D两点的椭圆和双曲线的离心率之积为(  )
A.$\frac{1}{2}$B.2
C.1D.条件不够,不能确定

分析 根据题意,设出A、B、C、D的坐标,计算可得|BD|的值,结合椭圆、双曲线的定义计算可得椭圆的离心率e1和双曲线的离心率e2,将椭圆和双曲线的离心率相乘即可得答案.

解答 解:根据题意,设A的坐标(-m,0),D的坐标为(-m,n),则B(m,0),D(m,n);
则|DB|=$\sqrt{4{m}^{2}+{n}^{2}}$,
在椭圆中,c=m,2a=|AD|+|BD|=n+$\sqrt{4{m}^{2}+{n}^{2}}$,
其离心率e1=$\frac{c}{a}$=$\frac{2m}{\sqrt{4{m}^{2}+{n}^{2}}+n}$,
在双曲线中,c=m,2a=|DB|-|AD|=$\sqrt{4{m}^{2}+{n}^{2}}$-n,
其离心率e2=$\frac{c}{a}$=$\frac{2m}{\sqrt{4{m}^{2}+{n}^{2}}-n}$,
椭圆和双曲线的离心率之积e1×e2=$\frac{2m}{\sqrt{4{m}^{2}+{n}^{2}}+n}$×$\frac{2m}{\sqrt{4{m}^{2}+{n}^{2}}-n}$=$\frac{4{m}^{2}}{4{m}^{2}}$=1;
故选:C.

点评 本题考查椭圆、双曲线的几何性质,关键是利用椭圆、双曲线的定义分析计算其离心率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将函数f(x)=2sin2x的图象向左平移$\frac{π}{12}$个单位后得到函数g(x)的图象,若函数g(x)在区间[0,$\frac{a}{3}$]和[2a,$\frac{7π}{6}$]上均单调递增,则实数a的取值范围是(  )
A.[$\frac{π}{3}$,$\frac{π}{2}$]B.[$\frac{π}{6}$,$\frac{π}{2}$]C.[$\frac{π}{6}$,$\frac{π}{3}$]D.[$\frac{π}{4}$,$\frac{3π}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.把函数$y=cos2x+\sqrt{3}sin2x$的图象经过变化而得到y=2sin2x的图象,这个变化是(  )
A.向左平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=sin({2x+\frac{π}{6}})+sin({2x-\frac{π}{6}})+cos2x+1$.
(1)求函数f(x)的最小正周期和函数的单调递增区间;
(2)已知△ABC中,角A,B,C,的对边分别为a,b,c,若$f(A)=3,B=\frac{π}{4},a=\sqrt{3}$,求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)已知复数$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,其共轭复数为$\overline z$,求$|\frac{1}{z}|+{(\overline z)^2}$;
(Ⅱ)设集合A={y|$y={x^2}-2x+\frac{1}{2}$},B={x|m+x2≤1,m<1}.命题p:x∈A;命题q:x∈B.若p是q的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在以下关于向量的命题中,不正确的是(  )
A.若向量$\overrightarrow a=(x,y)$,向量$\overrightarrow b=(-y,x)$(xy≠0),则$\overrightarrow a⊥\overrightarrow b$
B.若四边形ABCD为菱形,则$\overrightarrow{AB}=\overrightarrow{DC}\;,\;且|\overrightarrow{AB}|=|\overrightarrow{AD}|$
C.点G是△ABC的重心,则$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow 0$
D.△ABC中,$\overrightarrow{AB}$和$\overrightarrow{CA}$的夹角等于A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知${(2\sqrt{x}-\frac{1}{2x})^n}$的展开式中二项式系数和为64,则n=6,该展开式中常数项为60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)对于任意实数x满足条件f(x+2)=-f(x),若f(1)=-5,则f(f(5))=5.

查看答案和解析>>

同步练习册答案